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ABSTRACT

Operations Management of Food Recovery Programs

Joseph Warfel

Food recovery programs (FRPs) divert potential waste at grocery stores so that it

can be distributed to people who do not have enough food. FRPs are administered by

food banks, nonprofit organizations dedicated to the alleviation of hunger. The primary

purpose of FRP is to collect donations. Eventually, the food is distributed to other

nonprofit organizations (referred to as “agencies”) which in turn provide it to families

and individuals. A few food banks include agencies on FRP routes, a practice that is

becoming more common. This innovation presents opportunities and challenges: the

presence of agencies allows the food bank to reduce the required vehicle capacity and

more quickly distribute perishable food, but donations are random, so it is difficult to

provide consistent service to the agencies.

In this dissertation, we study three closely related models of FRP operations.

The one-commodity pickup and delivery allocation problem (1-PDA) models allocation

decisions for a given FRP route. The objective of the 1-PDA is to minimize the required
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vehicle capacity. We develop a simple three-step algorithm, the MILB algorithm, that

obtains an optimal solution to the 1-PDA.

We augment the 1-PDA with agency selection and node sequencing decisions to for-

mulate the selective 1-PDTSP with stochastic supply as a mixed-integer linear program

(MILP). It is possible to solve the problem with a MILP solver, but the solution time is

prohibitive for many realistic instances. Therefore, we propose a heuristic procedure, the

capacity reuse insertion heuristic (CRIH), based on inserting agencies into existing FRP

routes. In a case study based on data provided by Northern Illinois Food Bank, we obtain

insights regarding agency selection and node sequencing for FRP. We also demonstrate

that CRIH provides near-optimal solutions.

To model FRP operations at food banks where routing is inflexible and the food

obtained from FRP is crucial to agency operations, we generalize the 1-PDA to model

the one-commodity pickup and delivery allocation problem for agency-supporting FRP

(the 1-PDA-as). The 1-PDA-as differs from the 1-PDA by including parameters that

specify additional service requirements at donors and agencies. The objective of the 1-

PDA-as is to maximize total donations collected for a given route. By applying several

reformulations, we develop an optimal solution procedure for the 1-PDA-as that relies on

solving a series of linear programs; however, this solution procedure cannot be applied

to many realistic instances due to issues of numerical precision. Therefore, we propose

a heuristic solution procedure based on the MILB algorithm. In a case study, we obtain

insights about node parameters and node sequencing. We also demonstrate that the

heuristic generates near-optimal solutions.
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Dedication
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CHAPTER 1

Introduction

Starvation is the characteristic of some people not having enough food to

eat. It is not the characteristic of there not being enough food to eat.

Amartya Sen

Poverty and Famines

Abundant food is available in the United States: “3,900 calories per day for every

man, woman, and child in the country, whereas the average adult needs only a bit more

than half that amount, and children much less” [46]. Despite this abundance, millions

of Americans experience hunger. The United States Department of Agriculture (USDA)

reported that 12.7% of households (15.8 million) were food insecure in 2015, meaning that

they “had difficulty at some time during the year providing enough food for all members

due to a lack of resources.” Furthermore, 5.0% of households (6.3 million) had very low

food insecurity, a more severe state in which “the food intake of some household members

was reduced and normal eating patterns were disrupted at times during the year due to

limited resources” [14].

Simultaneously, enormous quantities of food are wasted: Between a quarter and a half

of the food in the United States (160 to 320 billion pounds annually) is wasted on farms, in

transit, at grocery stores, and in homes and restaurants [8]. At grocery stores, edible and

nutritious food is wasted because of store policies that require culling items before their

sell-by date; ordering far more of an item than demanded due to manager inexperience
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or data entry errors; and, most often (because grocery store managers feel obligated to

have everything that the customer wants), overstocking or overproducing due to the fear

of missing a sale [8, 55].

In this work, we study food recovery programs (FRPs), programs which divert potential

waste at grocery stores so that it can be distributed to people who do not have enough

food. FRPs are administered by food banks, nonprofit organizations dedicated to the

alleviation of hunger. In the most limited sense, a food bank is a warehouse where

donated and recovered food is stored until it is distributed to other nonprofit organizations

(referred to as “agencies”) which in turn provide it to families and individuals. In practice,

food banks have also assumed much of the responsibility for transporting donated food

to their warehouses and for distributing food from warehouses to agencies. There are

approximately two hundred food banks in the United States. In 2014, Feeding America

(the national organization of food banks) reported that 46.5 million unique clients receive

food assistance through food banks each year [19].

The primary purpose of FRP is to collect donations of food from grocery stores. How-

ever, a few food banks include agencies on their FRP routes, a practice that is becoming

more common. This innovation presents challenges and opportunities, which we study in

this work. For motivation and context, we focus on the operations of two food banks:

Northern Illinois Food Bank (NIFB) and the Greater Chicago Food Depository (GCFD).

In Chapter 2, we review the literature relevant to our work.

In Chapter 3, we describe the framework we use to model FRP. We state our modeling

assumptions regarding routes, donors, and agencies, and define notation used for models

in subsequent chapters.
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The purpose of including agencies on FRP routes differs among food banks. At NIFB,

agencies are included to extend the capacity of the vehicle. Although agencies value

the food they obtain through FRP, those allocations are supplemental to food provided

through other NIFB programs. At GCFD, FRP allocations play a larger role in the

operations of agencies. For some GCFD agencies, FRP may be the only consistent source

of some types of perishable food. We develop and analyze models for FRP at both types

of food banks: those where agencies are included primarily to extend vehicle capacity,

and those where FRP plays an essential role in supporting agency operations.

In Chapter 4, we introduce the selective one-commodity pickup and delivery traveling

salesman problem with stochastic supply (the selective 1-PDTSP with stochastic supply).

This problem models FRP at food banks (such as NIFB) that serve a large region, in

which agencies are included on FRP routes primarily to allow smaller vehicles to be used.

As an initial step in our formulation of the selective 1-PDTSP with stochastic supply, we

analyze the allocation decision for a fixed route, which we deem the one-commodity pickup

and delivery allocation problem (the 1-PDA). We present an algorithm that obtains an

optimal solution for the 1-PDA. We then use the structure of that algorithm as the basis

for a linear program formulation of the selective 1-PDTSP with stochastic supply.

To solve the selective 1-PDTSP with stochastic supply, we must choose which agencies

to include on the route; find a tour that satisfies a travel time constraint; and determine

how much food to place in the vehicle before leaving the food bank (the initial load)

and how much food to distribute at each agency (the allocation policy). In making these

decisions, we seek to minimize the vehicle capacity while accounting for the randomness

in donations. Although the linear program formulation can be solved to optimality, food



www.manaraa.com

14

bank staff do not have access to or experience with sophisticated optimization tools;

furthermore, many realistic instances cannot be solved in a reasonable amount of time.

Therefore, we also propose a heuristic that obtains solutions by inserting agencies into

existing routes of donors. We conclude with a case study based on NIFB data.

In Chapter 5, we generalize the 1-PDA to model the one-commodity pickup and de-

livery allocation problem for agency-supporting FRP (the 1-PDA-as) as a stochastic pro-

gram. The 1-PDA-as models the allocation decision at food banks (such as GCFD) where

routing is inflexible and the food obtained from FRP is crucial to agency operations. By

reformulating the problem as a constrained Markov decision process (CMDP), we obtain

an optimal solution procedure, but due to issues of numerical precision, it cannot be ap-

plied to general 1-PDA-as instances. We also propose a heuristic solution procedure for

the 1-PDA-as. We conclude with a case study to obtain insights about FRP routes and

to evaluate the quality of heuristic solutions.

In Chapter 6, we summarize the contributions of this research and outline possible

directions of future work regarding the selective 1-PDSTP with stochastic supply and

the 1-PDA-as, as well as a more general model of food bank logistics. We conclude

by highlighting the potential benefits of further collaboration between food banks and

Operations Research.



www.manaraa.com

15

CHAPTER 2

Literature review

In §2.1, we discuss articles in the operations research literature with a focus similar

to our work. In the remaining sections, we review the literature relevant to the two

models that are our primary objects of study. In §2.2, we review the literature relevant to

the selective 1-PDTSP with stochastic supply, in particular the 1-PDTSP with stochastic

demands defined and studied by Louveaux and Salazar-González [38]. In §2.3, we describe

problems similar to the 1-PDA-as.

2.1. Charitable food distribution in the OR literature

Our work joins a growing literature in the application of operations research to the

challenges of charitable food distribution.

Several authors have formulated and studied models of FRP or similar systems. Lien

et al. model allocation policies for the FRP at GCFD [37]. They model the problem as a

sequential resource allocation problem (SRA), but with an objective that considers equity

(SRA-e). Simultaneously, they seek to reduce the amount of donated food left unallocated

at the end of the route. Balçık et al. extend the single-route analysis of Lien et al.

to consider multiple routes, which they solve with a decomposition-based heuristic [5].

Güneş et al. model Three Rivers Table, a program similar to FRP at Greater Pittsburgh

Community Food Bank, as a one-commodity pickup-and-delivery vehicle routing problem
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(1-PDVRP) [28]. They apply three solution techniques to the problem: mixed integer

programming, constraint programming, and constraint-based local search.

Nair et al. formulate a periodic unpaired pickup-and-delivery vehicle routing prob-

lem (PU-PDVRP) to model FRP at OzHarvest, a food rescue organization in Sydney,

Australia, which they solve heuristicially [42]. A later article expands the model by con-

sidering perishable and nonperishable food, and proposes a more efficient meta-heuristic

based on Tabu search [43]. In another paper about FRP at OzHarvest, Nair et al. propose

the Food Rescue Allocation and Routing Problem (FRARP), a bi-objective formulation

that simultaneously optimizes routing cost and the equity of the allocation decision [45].

They solve the FRARP with a two-stage goal programming approach.

Davis et al. model a version of FRP in which the first node on a route may be a “Food

Delivery Point” (FDP), a site to which several agencies travel to receive food from the

food bank warehouse and where a FRP donation is collected [16]. (The FDP is a grocery

store serving as a satellite delivery location.) After visiting the FDP, the vehicle can visit

additional donors, but no further deliveries are made. They model the problem using

a two-stage approach: a capacitated set covering problem to assign agencies to FDPs,

then a periodic vehicle pick-up and delivery problem with backhauls to determine the

collection and delivery schedule over a finite planning horizon. They present a case study

for operations at the Second Harvest Food Bank of Northwest North Carolina.

A separate strand of research focuses on forecasting FRP donations. Brock and Davis

evaluate four approximation methods (including an artificial neural network and multi-

ple linear regression) to estimate donations from grocery stores, using data provided the

Food Bank of Central and Eastern North Carolina (FBCENC) [10]. They also estimate
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the transportation costs associated with using each approximation method, which they

compare to FBCENC’s actual transportation costs. Nair et al. evaluate several tech-

niques (including neural networks and multiple linear regression) to forecast OzHarvest’s

donations from grocery stores, restaurants, and bakeries [44]. Phillips et al. develop a

statistical model for the quantity of food available from donors through the FRP at Com-

munity Food Share (CFS), a food bank in north central Colorado [50]. They use their

model in a Monte Carlo simulation to study the conditions under which FRP donations

suffice to meet the demand of CFS’s agencies, and at what transportation cost.

Models of FRP vary in whether they focus on donors or agencies. In the existing

research motivated by FRP at GCFD, the allocation decision at agencies is modeled in-

tricately, but donations are considered deterministic within the context of a single problem

instance [5, 37]. Conversely, the research on forecasting FRP donations focuses exclusively

on donors [10, 44, 50]. The present models of FRP that include a routing decision define

donors as nodes with a deterministic supply and agencies as nodes with a deterministic

demand [16, 28, 42, 43, 45]. Our work is unique because it incorporates the randomness

of donations while providing a rich model of the allocation decision at agencies.

Researchers have also studied the distribution of food via scheduled deliveries from the

food bank warehouse. The vehicle routing with demand allocation problem (VDRAP),

first formulated by Ghoniem et al. as a location routing problem (LRP) variant, is mo-

tivated by a distribution system used at some food banks in which, instead of delivering

directly to agencies, food bank vehicles visit intermediate delivery points where agencies

pick up food [25]. The objective of the VDRAP is to minimize the weighted sum of

the total distance traveled by food bank and agency vehicles. Several heuristics have
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been proposed for the VDRAP: Ghoniem et al. apply a relax-and-fix technique and a

specialized column generation approach [25]; Solak et al. develop a two-stage sequential

solution approach and two procedures based on Benders decomposition [59]; and Reihaneh

and Ghoniem propose a multi-start heuristic with local improvement and perturbation

schemes that yields near-optimal solutions within a few seconds [53].

Örgüt et al. study the problem of equitable food allocation at FBCENC [48]. FBCENC

must distribute food to each of the 34 counties it serves in proportion to the number of

people living in poverty. However, counties (to be precise, the agencies in each county)

are limited in their capacity to accept and store food. Örgüt et al. formulate and solve

the Food Distribution Model, which minimizes the total amount of food not distributed

while meeting FBCENC’s requirements. They also formulate the Capacity Allocation

Model to determine how additional storage capacity should be allocated to counties to

improve the objective of the Food Distribution Model. Fianu and Davis further develop

the Food Distribution Model to include stochasticity in supply, proposing a discrete-time,

discrete-state (DTDS) Markov decision process (MDP) in which county-level allocation

decisions are made monthly from random donations and transfers of food [22]. They

compare several allocation policies for the DTDS MDP.

Gleaning, the collection of unharvested food from farms by volunteers, is an important

source of food for some food banks. Sönmez et al. model the problem of making a

gleaning schedule at the Food Bank of the Southern Tier in New York as a stochastic

optimization problem, which they solve with a simulation-optimization approach [60].

Ata et al. approach the problem of scheduling gleaning events by developing a queuing

model, from which they obtain a dynamic staffing policy [3].
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The OR literature includes papers about various other aspects of food bank and agency

operations. Chou et al. study optimal delivery routes for a charity in Singapore that

organizes volunteers to gather donations of unsold bread from bakeries and transport

it to homes for the elderly [13]. Cuevas-Ortuño and Gómez-Padilla propose a mixed

integer program to model the problem of preparing boxes using a mixture of donated and

purchased foods at the Banco de Alimentos de México (the food bank of Mexico City) [15].

The boxes are personalized by family and must meet a set of nutritional requirements.

Mohan et al. develop a simulation model to improve warehouse operations and recommend

changes to food distribution practices at the Society of Saint Vincent de Paul in Phoenix,

Arizona [41]. Yıldız et al. propose a LRP variant to model the Meals on Wheels program

in Allegheny County, Pennsylvania [69]. They develop a memetic algorithm to solve the

problem. Hemmelmayr et al. study a variant of the periodic location routing problem

that models the disposal of cardboard by anti-hunger agencies in Chicago, Illinois [29].

2.2. Literature review for the selective 1-PDTSP with stochastic supply

In routing problems, vehicle capacity is often modeled as a resource (i.e., a constraint)

that limits the set of feasible solutions. However, the required capacity can also be in-

terpreted as a value impacted by a set of logistic decisions, as is the case in pickup and

delivery problems (PDPs). In a PDP, each node either supplies or demands a set of com-

modities. For many-to-many PDPs [6], including the one-commodity case, intelligently

planned routes permit vehicle capacity to be “re-used:” the demand at one node can be

satisfied with the supply picked up at a node visited earlier, freeing vehicle capacity to

accept additional supply.
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In the one-commodity pickup-and-delivery travelling salesman problem (1-PDTSP),

every node other than the depot has either a positive or negative demand of a homogeneous

commodity [30, 31, 32]. Nodes with positive demand are pickups, while those with negative

demand are deliveries. Both types of demand are deterministic. A feasible solution to

the 1-PDTSP is a tour that departs the depot (possibly with some initial load), visits

each customer exactly once to satisfy its demand, then returns to the depot, maintaining

a feasible vehicle load throughout.

In the literature, the model most similar to the selective 1-PDTSP with stochastic

supply is a generalization of the 1-PDTSP by Louveaux and Salazar-González [38]. They

formulate the 1-PDTSP with stochastic demands by defining the demand at every node

as a random variable with a discrete probability distribution. For the 1-PDTSP with

stochastic demands, the vehicle capacity is not a parameter; rather, the vehicle capacity

is minimized through the choice of the initial load and the tour.

Louveaux and Salazar-González define three versions of feasibility for the 1-PDTSP

with stochastic demands: sufficiency, adaptability, and survivability. A scenario is the

particular sample path that results when each of the random demands is observed. The

three versions differ in whether the initial load and tour must be chosen before or after

the scenario is known. If neither the tour nor the initial load must be decided before

demands are observed, then the vehicle capacity is sufficient if a feasible tour and initial

load can be found for every possible scenario. If the tour must be decided before demands

are observed, but the initial load may be decided afterwards, then a tour is adaptable if

a feasible initial load can be found for every possible scenario. If both the tour and the
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initial load must be decided before demands are observed, then a tour is survivable if

there exists an initial load that is feasible for every possible scenario.

The selective 1-PDTSP with stochastic supply is closely related to the 1-PDTSP with

stochastic demands in that we seek to minimize capacity through the same decisions (the

initial load and the route). For our motivating context, survivability is the relevant version

of feasibility, since both the initial load and the node sequence of an FRP route must

be chosen before the donations are observed. We extend the 1-PDTSP with stochastic

demands by incorporating two additional decisions: allocation and node selection.

In the 1-PDTSP with stochastic demands, the demand at any node is a single value

which must be satisfied exactly; in the selective 1-PDTSP with stochastic supply, an

allocation decision must be made at each agency. Demand at an agency is as a range based

on the population the agency serves and its ability to store perishable foods. Agencies’

flexibility in accepting a range of allocations can be used by the food bank to mitigate

the impact of the randomness in donations.

The selective 1-PDTSP with stochastic supply further differs from the 1-PDTSP with

stochastic demands because, although all donors must be visited, the food bank chooses

which agencies to include in the FRP route. In standard PDPs, all nodes are included

on the route [6]. An exception is the single-vehicle routing problem with unrestricted

backhauls [62], in which all deliveries are compulsory, but a set of optional pickups is

available. Each pickup provides some profit, which can be used to offset the total travel

time of the route. In a sense, this problem is complementary to the setting of FRP, in

which pickups are compulsory and deliveries are optional. However, unlike the FRP, the

single-vehicle routing problem with unrestricted backhauls is a one-to-many-to-one PDP



www.manaraa.com

22

(using the classification of Berbeglia et al. [6]), in which the commodities picked up cannot

be used to satisfy demand at delivery nodes.

Although the node selection decision is rarely considered in the PDP literature, there

are contexts in which such a decision is relevant. Several well-known TSP variants, collec-

tively called TSPs with profits, include a node selection decision [21]. Some examples are

the orienteering problem (also known as the selective TSP) [36, 65] and the prize-collecting

TSP [4, 7]. In TSPs with profits, a profit value is associated with each node. The ob-

jective is to find a circuit that maximizes total collected profit subject to a constraint on

maximum total travel time; or to find a circuit that minimizes total travel time subject to

a constraint on minimum total collected profit; or to minimize total travel time less total

collected profit. There are a few variants of TSPs with profits in which including some

subset of the nodes on the route is compulsory (akin to FRP donors) while the remaining

nodes are optional (akin to FRP agencies) [24, 61].

The multiple-vehicle equivalent of 1-PDTSP, the one-commodity pickup-and-delivery

vehicle routing problem (1-PDVRP), is used by Güneş et al. to model a program similar

to FRP at the Greater Pittsburgh Community Food Bank [28]. They optimize vehicle

routes for the Three Rivers Table program based on deterministic estimates of demand

and supply obtained from historical data. van Anholt et al. formulate a problem similar to

the 1-PDTSP, the inventory-routing problem with pickups and deliveries (IRPPD), to find

routes for a fleet of armored trucks that collect and deliver cash at recirculation automated

teller machines [63]. They obtain optimal solutions for realistically sized problems using

an exact branch-and-cut algorithm. Although both of these papers focus on applications
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similar to FRP, neither model addresses randomness in supply, an essential property of

FRP donations.

The selective 1-PDTSP with stochastic supply contributes to the literature on PDPs

by introducing more flexible operating constraints regarding demand. In particular, we

allow delivery nodes to accept a range of allocations, and we incorporate node selection

into the routing aspect of the problem. Our work extends the survivability version of the

1-PDTSP with stochastic demands, but the additional flexibility in our problem requires

additional decisions: not only must we obtain a route and initial load that minimize the

required vehicle capacity, but we must also choose which agencies to include on the route

and determine an allocation policy at each agency.

2.3. Literature review for the 1-PDA-as

The 1-PDA-as resembles stochastic variants of the inventory routing problem (IRP)

and the vehicle routing problem (VRP), with several key differences. The IRP models

the distribution of single commodity from a single facility to a set of demand nodes over

a (possibly infinite) planning horizon [12]. Some IRP variants include consideration of

the allocation decision (which is absent in the 1-PDTSP); however, even in stochastic

variants, all allocation decisions and routing decisions are made before the vehicle leaves

the depot [33, 34]. Some variants of the stochastic vehicle routing problem (SVRP)

consider uncertainty in demand [26, 47, 58]; however, in these, it is possible to make

routing changes in response to stochastic information on route. Despite the resemblance

between the context of our research and that of other routing problems, the mixture of
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supply and demand nodes requires fundamentally different modeling choices, so results

regarding the IRP and SVRP are not directly applicable to the 1-PDA-as.

In the literature, the problem that most closely resembles the 1-PDA-as is the SRA-e

proposed by Lien et al. to model allocation policies for FRP at GCFD [2014] and extended

to the multiple-vehicle case by Balçık et al. [5]. The 1-PDA-as differs from their model

primarily due to two modeling choices.

First, we consider a wider variety of route structures for FRP. Lien et al. considered

only routes in which all donors were visited before all agencies. (At the time of their

observations, this was the only type of route used at GCFD, and it is still the most

common FRP route structure.) However, this type of route structure does not allow

agencies to be used to extend the capacity of the vehicle. Therefore, the 1-PDA-as models

FRP routes in which the donors and agencies are visited in any order.

As a consequence of the greater variety of route structures, the 1-PDA-as models

donors differently. Although Lien et al. recognize that donations are random, there is no

need to model donors for the SRA-e: decisions are only made at agencies, which are visited

after all donors have been visited. In contrast, the 1-PDA-as models the randomness of

donations explicitly.

Second, we model the allocation decision at agencies differently. In the SRA-e, agencies

express their demand according to a known probability distribution. For the 1-PDA-as,

the need for food at agencies is not modeled as random. Rather, it is expressed through

a set of parameters that represent acceptable service (described in §3.2.3). In essence,

this modeling choice represents a different conception about the role of food provided
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through FRP in agency operations and the amount of information available to the food

bank about its agencies.
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CHAPTER 3

Modeling framework

In §4 and §5, we propose and analyze several models related to FRP operations.

Although each model has a distinct scope and purpose, they share a common framework

and notation, which we describe in the present chapter.

Our notation for the components of a FRP route is based on the decomposition of the

route into “segments,” which we define in §3.1. We then present our modeling approach

for each type of node: the food bank warehouse (§3.2.1), donors (§3.2.2), and agencies

(§3.2.3). In §3.3, we define a set of summary values for FRP routes.

3.1. Segments

The fundamental structure of a FRP route is the dyad of a donor followed by an

agency. The donor provides food that is allocated at the agency, and that allocation

frees capacity in the vehicle to accept further donations. For agencies to serve the role of

freeing capacity, a donor must be immediately followed by an agency somewhere in the

FRP route. We refer to this fundamental structure as a “segment.” That is, a segment

consists of a donor immediately followed by an agency.

We decompose any FRP route into n segments, indexed i ∈ {1, . . . , n}. Donors

and agencies are designated by their segment; that is, Donor i and Agency i comprise

Segment i. When necessary, “dummy” nodes (a donor with no supply or an agency with

no demand) are introduced to induce the segment structure. For example, consider the
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following FRP route, in which donors are represented as D and agencies as A:

D A D D A A D

We augment the route with dummy nodes, denoted D0 and A0, to create the pattern

of donors followed by agencies:

D A D A0 D A D0 A D A0

The route then consists of five segments:

D A |D A0 |D A |D0 A |D A0

The number of segments in a route depends not only on the number of donors and

agencies, but also on their order. For a route of |D| donors and |A| agencies, the number

of segments n is bounded by:

max {|D|, |A|} ≤ n ≤ |D|+ |A| (3.1)

The concept of a segment is not necessary to model FRP. We choose to model FRP

with segments because it provides a standardized modeling framework. Unlike similar

problems (such as the the 1-PDTSP with stochastic demands [38]), donor and agency

nodes are different not only in that one has positive “demand” and the other has negative

“demand”; rather, they are materially different types of nodes, at which different decisions

must be made. By modeling the FRP route as a series of segments, a donor is always

followed by an agency. This simplifies our problem formulations and other algebraic
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statements, because we need not make conditional statements that depend on whether

the prior or subsequent node is an agency or a donor.

Although we choose to model FRP routes with segments primarily for expository

purposes, it is a modeling choice that can impact problem size. However, problem size

is only a concern for formulations that are solved using optimization software. In our

work, there are only two such formulations: Formulation 4.9, the selective 1-PDTSP with

stochastic supply, and Formulation 5.12, the LP solved repeatedly to obtain a solution to

the 1-PDA-as.

Formulation 4.9, the selective 1-PDTSP with stochastic supply, models the route as

a set of nodes without reference reference to segments. (A formulation with segments is

not convenient for that model, since one component of its solution is the node sequence.)

Formulation 5.12 is modeled with segments. In principle, this leads to the creation of

unnecessary decision variables when the route contains consecutive donors, because each

donor is modeled individually (with a dummy agency for all but the last donor in the

sequence) although a decision is only made between the final donor in the sequence and

the following agency. However, if preprocessing were applied to consolidate consecutive

donors, the segment-based model would not include these unnecessary decision variables.

We have not implemented donor consolidation because the average solution time for the 1-

PDA-as is modest. Furthermore, maintaining the separation between consecutive donors

allows more flexibility to potentially adapt the model to a context in which a decision

regarding collection must be made at each donor.
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3.2. Modeling nodes

A FRP route comprises several types of nodes, each with different characteristics: the

food bank warehouse (the depot), donors, and agencies.

The models of §4 and §5 model donors and agencies differently. In particular, ad-

ditional parameters present in §5 allow for a richer model of collection and allocation

decisions. In the present section, we describe the notation relevant to all models, making

note of those used only in §5.

3.2.1. Food bank warehouse

The food bank warehouse has ample food available to be placed in the vehicle before

starting the FRP route. This initial load may be important if the donors on the route

are unlikely to provide enough food to satisfy the demand of the agencies; however, its

presence reduces the capacity available to collect donations. We denote the initial load

S0.

We denote the vehicle capacity Q when it is a decision variable (in §4) and Q when

it is a parameter (in §5). Food banks operate a variety of vehicles that differ in capacity,

ranging from tractor trailers to small trucks called “cube vans.” It is preferable to use the

smallest vehicle possible for FRP because smaller vehicles are less expensive to operate;

they consume less fuel – a significant expense because the vehicles are refrigerated – and

can be operated by a driver with a more common type of license. Furthermore, supporting

FRP with smaller vehicles allows larger vehicles to be used for specialized tasks, such as

picking up large donations from wholesalers or making scheduled deliveries to agencies

located far from the food bank warehouse.
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We assume that the initial load and the vehicle capacity are integers.

3.2.2. Donors

Donors supply a random amount of food. Food banks maintain extensive records of food

donations from all sources. As such, the food bank has data that can be used to estimate

the probability distribution of the quantity of food donated at each visit. Therefore, we

model the quantity of food available at Donor i as a discrete independent bounded integer-

valued non-negative random variable denoted Di. The minimum and maximum donations

are respectively denoted dmin
i = min supp(Di) and dmax

i = max supp(Di). (By supp(X) we

refer to the minimal support of the random variable X.) We define two extreme donation

scenarios: the minimum scenario, in which all donors supply their minimum donation

(that is, Di = dmin
i ∀i), and the maximum scenario, in which all donors supply their

maximum donation (that is, Di = dmax
i ∀i).

We assume that Di is discrete and integer-valued because we have observed donation

amounts measured as an integer number of boxes. Our assumption that the Di are

independent is based on conversations with FRP drivers and staff at several food banks.

The quantity of donated food collected at Donor i, also a random variable, is denoted

Ci. Clearly, Ci 4 Di.

We assume that the driver collects as much of the donated food as the available vehicle

capacity allows. We term this the Maximum Collection Policy because the driver collects

the maximum possible quantity of food. This policy reflects our observations of FRP

operations. The primary purpose of FRP is to collect donations. Collecting as much of

the donation as possible also fulfills the expectations of donors. When any part of the
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donation is not collected, the donor must seek another entity that can take the remainder

of the donation, a process that compromises the primary advantage of working with the

food bank: having a single destination for all donations [70]. Alternatively, the donor

could discard food that is not picked up. However, this causes the donor to lose the tax

benefit of the refused donation, which may be an important incentive [1].

The load upon arrival to Donor i is a discrete random variable denoted SDi . The rela-

tionship between the donation collected at Donor i and the vehicle capacity is expressed

by:

SDi + Ci ≤ Q ∀i ∈ {1, . . . , n} (3.2)

In §5, we model each donor with a guaranteed collection value denoted ci. That is,

upon arrival to Donor i, the vehicle must have sufficient capacity to accept a donation of

ci. Therefore, the Maximum Collection Policy is still applied, but with respect to a value

that may be less than the vehicle capacity.

3.2.3. Agencies

The load upon arrival to Agency i is a discrete random variable denoted SAi . In terms of

the notation introduced to model donors, SAi = SDi +Di.

Upon arrival to Agency i, food is removed from the vehicle and delivered to the agency.

The amount of food is the allocation, which we denote a. We define three values at each

agency that constrain the allocation decision: the minimum, maximum, and sustaining

allocations.

• The minimum allocation is the least amount of food that may be allocated to

the agency. The minimum allocation at Agency i is denoted amin
i . Agencies
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must recruit volunteers or requisition staff to unload, inspect, and store the food

from FRP. Therefore, there must be a guarantee of receiving, at minimum, some

substantial amount. Although the minimum allocation is sufficient to justify the

agency’s participation in FRP, it is not enough to provide a variety of perishable

foods to the entire population served by the agency, or it is not enough to offer

such a variety throughout the period between FRP visits.

• The maximum allocation is the greatest amount of food that may be allocated

to the agency. The maximum allocation at Agency i is denoted amax
i . This value

is determined by the storage capacity of the agency, or by the greatest amount

of perishable food it can distribute between FRP visits.

• The sustaining allocation (used only in §5) is the least amount of food that the

agency needs in order to offer a variety of perishable foods to the entire population

it serves throughout the period between FRP visits. The sustaining allocation

at Agency i is denoted asusti . Ideally, every agency would receive at least its

sustaining allocation every time it is visited, so that the population served by

the agency would consistently have access to nutritious perishable foods. Due

to the randomness of FRP donations, this may not be possible. Therefore, we

introduce the parameter αi, the minimum probability that Agency i receives at

least its sustaining allocation.

We assume that amin
i , amax

i , and asusti are integers. We describe the allocation decision

in terms of two distinct but closely related concepts: the allocation policy and the long-run

allocation. The allocation policy is a function that states how much food is allocated for a

particular realization of SAi , the load upon arrival to Agency i. The long-run allocation is a
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random variable that represents the quantity of food allocated over all possible realizations

of SAi .

Definition 3.2.1. The allocation policy at Agency i, denoted Ai(s) ∀ s ∈ supp(SAi ),

is a discrete integer-valued random variable which is a function on supp(SAi ). Ai(s) rep-

resents the allocation if the load is s upon arrival to Agency i.

The range of the allocation policy at Agency i is a space of discrete random variables.

For each s ∈ supp(SAi ), the allocation policy Ai(s) is a discrete random variable defined

by a set of probabilities {ps0, ps1, ..., psmin{amax
i ,s}} such that

Pr{Ai(s) = a|SAi = s} = psa ∀ a ∈ {amin
i , ...,min{amax

i , s}}

and
min{amax

i ,s}∑
a=amin

i

psa = 1.

If any of the psa = 1, then Ai(s) is deterministic for the realization SAi = s.

The long-run allocation at Agency i is defined in terms of the allocation policy:

Definition 3.2.2. The long-run allocation at Agency i, denoted Ai, is the amount

allocated at Agency i in the long run. It is a discrete non-negative integer-valued bounded

random variable. It is the outcome of applying Ai(·) to each s ∈ supp(SAi ), with the

probability Pr{SAi = s}. That is,

Ai = Ai(s) w.p. Pr{SAi = s}, (3.3)
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or, equivalently,

Ai = Ai(SAi ). (3.4)

The relationship between the long-run allocation at Agency i and the parameters of

Agency i is described by a set of inequalities, one for each allocation value:

Ai ≥ amin
i (3.5a)

Ai ≤ amax
i (3.5b)

Pr{Ai ≥ asusti } ≥ αi (3.5c)

3.3. Summary values

We define three summary values with respect to a FRP solution:

C Expected total collection

A Expected total allocation

T Expected terminal load (food in the vehicle after allocation at Agency n)

In terms of the notation introduced in §3.2, the expected total collection and expected

total allocation are:

C =
n∑
i=1

E[Ci] (3.6a)

A =
n∑
i=1

E[Ai] (3.6b)
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The terminal load is the amount in the vehicle after all collections and allocations;

therefore, it is computed in terms of the other summary values and S0 as:

T = S0 + C − A (3.7)

Equivalently, Equation (3.7) can be expressed:

S0 + C = A+ T (3.8)

In Equation (3.8), the left side comprises all food that enters the vehicle (the initial load

and collected donations) and the right side comprises all food that leaves the vehicle

(allocations at agencies on the route and food stored in the warehouse at the end of the

route).
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CHAPTER 4

The selective 1-PDTSP with stochastic supply

Our formulation of the selective 1-PDTSP with stochastic supply is motivated by op-

erations at Northern Illinois Food Bank (NIFB). NIFB serves thirteen counties in north-

eastern Illinois, comprising urban, suburban, and rural areas. The primary purpose of

FRP at NIFB is to bring donations to a food bank warehouse. Agencies are included on

FRP routes at NIFB to extend the capacity of the vehicle, allowing relatively smaller ve-

hicles to be used. Participating in FRP is beneficial for agencies, especially those located

far from a warehouse, because it provides frequent deliveries of perishable food. However,

the food from FRP plays a primarily supplemental role for NIFB agencies; the bulk of

their food is provided by scheduled deliveries from a food bank warehouse.

In §4.1, we define the one-commodity pickup and delivery allocation problem (1-PDA),

which seeks the minimum capacity such that a given FRP route is survivable, as a sto-

chastic program. It is not possible to solve the stochastic program directly, so we develop

a simple three-step algorithm that obtains an optimal solution. In §4.2, we use a lin-

ear program reformulation of the 1-PDA as the basis for a mixed-integer linear program

formulation of the selective 1-PDTSP with stochastic supply. We also provide analytical

results regarding solutions to the problem. In §4.3, we propose the capacity reuse insertion

heuristic (CRIH), a simple heuristic that can be applied by food banks to insert agencies

into existing FRP routes. In §4.4, we present a case study based on NIFB data to provide

managerial insights about FRP operations and to evaluate CRIH.
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4.1. Allocation decisions for a fixed route

In §4.1.1, we formulate the 1-PDA as a stochastic program. The solution to the 1-

PDA has three components: the initial load, the allocation policy at each agency, and the

vehicle capacity. In §4.1.2, we develop an exact solution algorithm for the 1-PDA.

4.1.1. Stochastic program formulation of the 1-PDA

The parameters and decision variables used to formulate the 1-PDA are defined in Table

4.1.

Table 4.1. Parameters and decision variables of the 1-PDA

Parameters

n number of segments, indexed by i ∈ {0, 1, . . . , n}; “0” represents the depot

Di donation from Donor i, a discrete random variable

amin
i minimum allocation at Agency i

amax
i demand at Agency i; the maximum allocation at Agency i

Decision variables

Q capacity of the vehicle, a non-negative integer

S0 initial load, a non-negative integer

Ai(·) allocation policy at Agency i; defined for all s ∈ supp(SAi )

SDi load upon arrival to Donor i, a discrete integer-valued random variable

SAi load upon arrival to Agency i, a discrete integer-valued random variable

Figure 4.1 depicts the relationship among the variables associated with Segment i.
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Figure 4.1 Segment i with corresponding variables

Minimize Q (4.1a)

subject to SAi = SDi +Di i ∈ {1, . . . , n} (4.1b)

SDi+1 = SAi −Ai(SAi ) i ∈ {1, . . . , n} (4.1c)

Ai(s) ≤ s ∀s ∈ supp(SAi ), i ∈ {1, . . . , n} (4.1d)

amin
i ≤ Ai(s) ≤ amax

i ∀s ∈ supp(SAi ), i ∈ {1, . . . , n} (4.1e)

SDi +Di ≤ Q i ∈ {1, . . . , n} (4.1f)

SD1 = S0 (4.1g)

S0 ∈ Z+
0 (4.1h)

Q ∈ Z+ (4.1i)

The objective function (4.1a) minimizes the required capacity.

Constraints (4.1b) and (4.1c) describe the movement of food in and out of the vehicle.

Constraints (4.1b) calculate the load after visiting a donor in terms of the load upon

arrival and the donation collected. Constraints (4.1c) express the load after visiting an

agency in terms of the load upon arrival and the allocation policy at the agency.
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Constraints (4.1d) and (4.1e) restrict the allocation policy Ai(·). Constraints (4.1d)

limit allocations to be no more than the load. Constraints (4.1e) ensure that allocations

be no less than the minimum allocation and no more than the maximum allocation.

Constraints (4.1f) ensure that the capacity suffices to collect the entire donation at

each donor. Constraint (4.1g) defines SD1 as a random variable equal to the initial load

S0 with probability 1. Constraint (4.1h) declares the initial load S0 to be a non-negative

integer. Constraint (4.1i) declares the capacity Q to be a positive integer.

Solving the 1-PDA to optimality is not straightforward. Approached directly as a

stochastic program, the problem is intractable for any but the most trivial instances. In

the following section, we develop a simple and efficient three-step algorithm to solve the

problem to optimality. We utilize key concepts that underlie the algorithm to formulate

the selective 1-PDTSP with stochastic supply in §4.2. (It is also possible to solve the

1-PDA with dynamic programming (DP), as described in Appendix B.)

4.1.2. Solution approach for the 1-PDA

The allocation policy for FRP must address two conflicting constraints. In order to collect

donations, capacity must be freed by allocating to agencies. However, if too much is

allocated at an agency and donations later in the route are low, the load may not satisfy

demand at subsequent agencies. We develop an exact solution method that balances

these two constraints by determining the load required at every segment for the minimum

scenario, and which therefore ensures survivability over all scenarios.

Minimum intermediate load. At each segment, there must exist a minimum load that

ensures all subsequent agencies receive at least the minimum allocation, even if only the
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minimum donation is collected at every subsequent donor. We formalize this idea as the

minimum intermediate load :

Definition 4.1.1. The minimum intermediate load l∗i at Segment i is the mini-

mum load required upon arrival to Segment i to provide at least the minimum allocation

to Agency i and all subsequent agencies.

Figure 4.2 Final segment under the minimum scenario

Consider the final segment of the route under the minimum scenario, depicted in

Figure 4.2. If the minimum donation is less than the minimum allocation (that is, if

dmin
n < amin

n ), then to satisfy the minimum allocation requirement at the agency, the load

must be at least amin
n − dmin

n upon arrival to Donor n. We isolate and generalize this value

as the supply gap:

Definition 4.1.2. The supply gap gi is the amount by which the minimum supply

available in Segment i fails to meet the minimum demand in Segment i. It is the difference

between the minimum collection at Donor i and the minimum allocation at Agency i:

gi = amin
i − dmin

i (4.2)

Figure 4.2 only depicts the final segment of the route, Segment n. At Segment n− 1,

the situation is similar, but the requirements of Segment n must also be considered. That
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is, upon arrival to Donor n−1, the load must be enough to overcome a potential shortfall

in donations at Donor n−1 and, after allocation at Agency n−1, the load must be at least

gn in order to serve Agency n. In general, the minimum intermediate load of Segment i can

be computed in terms of the supply gap at Segment i (gi) and the minimum intermediate

load at Segment i+ 1 (l∗i+1):

l∗i = (l∗i+1 + gi)
+ (4.3)

Since allocation policies are indexed by segments, we have defined the minimum in-

termediate load in terms of segments; however, it could be defined in terms of individual

nodes. We use the node-based approach to formulate the selective 1-PDTSP with sto-

chastic supply in §4.2.

MILB algorithm. Since our solution algorithm for the 1-PDA is based on the concept of

the minimum intermediate load, we deem it the minimum intermediate load-based (MILB)

algorithm.

A solution to the 1-PDA comprises the initial load S0, the allocation policy Ai(·) ∀i ∈

{1, . . . , n}, and the vehicle capacity Q. Each of the three steps of the MILB algorithm

obtains one of the three parts of a 1-PDA solution.

Step 1: Calculate minimum intermediate loads and obtain initial load. After

visiting Agency n, no further allocations are made, so the minimum intermediate load

after the final segment is l∗n+1 = 0. Therefore, starting from Segment n, the minimum

intermediate load for every prior segment is calculated recursively by applying Equation

(4.3).
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Any feasible initial load S0 must be at least l∗1. Although an initial load greater than

l∗1 would be feasible, capacity is minimized by choosing the minimum feasible initial load.

We denote this value Sl
∗
0 to emphasize its relationship to the MILB algorithm: Sl

∗
0 = l∗1.

Step 2: Define allocation policy. We define the minimum intermediate load-based

(MILB) allocation policy Al∗
i (·) in terms of l∗i :

Al∗

i (s) = min{s− l∗i+1, a
max
i } ∀ s ∈ supp(SAi ), ∀ i ∈ {1, . . . , n} (4.4)

Lemma 4.1.3. Given a scenario (d1, d2, . . . , dn) and initial load S0, no allocation

policy allocates more in total than the MILB allocation policy Al
i(·) ∀ i ∈ {1, . . . , n}.

A formal proof of Lemma 4.1.3 (and all analytical results) is provided in Appendix A,

but the result can be demonstrated intuitively: At Agency i, the MILB allocation policy

Al∗
i (·) allocates amax

i , unless doing so would reduce the load to less than the minimum

intermediate load of the next segment, in which case Al∗
i (·) allocates s− l∗i+1. For a given

load s, it is not possible to define a feasible policy that allocates more food to the agency:

allocating more than amax
i would violate Constraint (4.1e) of the 1-PDA, while allocating

more than s − l∗i+1 would cause the load to be less than the minimum intermediate load

of the next segment.

Step 3: Calculate maximum intermediate loads and capacity. The MILB max-

imum intermediate load ul
∗
i is the maximum possible load upon arrival to Segment i if

the initial load is Sl
∗
0 = l∗1 and the allocation policy is the MILB allocation policy Al∗

i (·).

Note that ul
∗
i is not an upper bound on the load for every feasible 1-PDA solution; it is

only relevant to the MILB solution.
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For Segment 1, ul
∗
1 = Sl

∗
0 = l∗1. The MILB maximum intermediate load for every

subsequent segment is then calculated recursively:

ul
∗

i+1 = max
{
ul
∗

i + dmax
i − amax

i , l∗i+1

}
(4.5)

The structure of Equation (4.5) results from applying the MILB allocation policy Al∗
i (·),

Equation (4.4). The load upon arrival to Segment i+ 1 is maximized when the maximum

load is present upon arrival to the previous segment (ul
∗
i ) and the maximum donation

(dmax
i ) is collected at Donor i. The MILB allocation policy allocates amax

i , unless doing

so would cause the load to decrease below the minimum intermediate load of the next

segment. Therefore, the load after allocating at Agency i is the maximum of ul
∗
i + dmax

i −

amax
i and l∗i+1.

We calculate the MILB maximum intermediate loads as a step to obtaining the ca-

pacity of the MILB solution, Ql∗ . The maximum load over the course of the route results

when the sum of ul
∗
i and the donation collected at Donor i is greatest; that is:

Ql∗ = max
i

(
ul
∗

i + dmax
i

)
(4.6)

Theorem 4.1.4. The MILB solution (consisting of initial load Sl
∗
0 , allocation policy

Al∗
i (·) ∀ i ∈ {1, . . . , n}, and capacity Ql∗) is an optimal solution to the 1-PDA.

Intuitively, the MILB solution is an optimal solution to the 1-PDA because no allo-

cation policy could free more capacity to accept donations: the vehicle begins the route

with the minimum feasible load, and at each agency, no greater amount can be allocated

while maintaining feasibility.



www.manaraa.com

44

4.2. Formulation of the selective 1-PDTSP with stochastic supply

In §4.2.1, we introduce the implicit 1-PDA, an alternate formulation of the 1-PDA

that does not explicitly model the allocation decision. In §4.2.2, we augment the implicit

1-PDA with agency selection and node sequencing decisions to formulate the selective

1-PDTSP with stochastic supply.

4.2.1. Implicit 1-PDA

To solve the 1-PDA, we need not model the allocation decision explicitly. Rather, we

demonstrate that it suffices to model the range of possible vehicle load values through

the implicit 1-PDA. The minimum load at each segment is the only input (other than

parameters) required by the MILB algorithm, which provides an optimal solution, so an

optimal solution in terms of the range of load values implies an optimal solution to the 1-

PDA. The implicit 1-PDA is not intrinsically useful, but since it can be stated as a linear

program, it is a crucial intermediate step in the formulation of the selective 1-PDTSP

with stochastic supply.

We have demonstrated the primacy of the extreme scenarios in solving the 1-PDA.

The minimum scenario determines the minimum intermediate load at each segment and,

through this, the minimum feasible initial load; the maximum scenario and the minimum

intermediate loads determine the capacity. Therefore, we define two sets of variables which

represent the load under the extreme scenarios: the li and ui respectively represent the

minimum and maximum load upon arrival to Segment i. By describing the relationship

among these sets of variables, we formulate the implicit 1-PDA as a linear program with

2n+ 4 variables and 5n+ 3 constraints.
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Minimize Q (4.7a)

subject to li ≥ 0 i ∈ {1, . . . , n+ 1} (4.7b)

li−1 ≥ li − dmin
i−1 + amin

i−1 i ∈ {2, . . . , n+ 1} (4.7c)

ui ≥ ui−1 + dmax
i−1 − amax

i−1 i ∈ {2, . . . , n+ 1} (4.7d)

ui ≥ li i ∈ {1, . . . , n+ 1} (4.7e)

Q ≥ ui + dmax
i i ∈ {1, . . . , n} (4.7f)

S0 = l1 (4.7g)

The objective (4.7a) is the minimization of vehicle capacity. Constraints (4.7b) con-

strain the minimum load to be nonnegative. Constraints (4.7c) ensure that the minimum

load suffices for the minimum allocation. Constraints (4.7d) constrain the maximum load

in relation to the maximum donations and allocations. Constraints (4.7e) ensure that the

maximum load be greater than the minimum load. Constraints (4.7f) relate the capacity

to the maximum load under the maximum scenario. Constraint (4.7g) defines the initial

load.

Since Formulation 4.7 minimizes capacity, to demonstrate that it provides an optimal

solution to the 1-PDA, we need only demonstrate that its solution implies a feasible

allocation policy. This is addressed by Theorem 4.2.1.
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Theorem 4.2.1. Given a solution to the implicit 1-PDA, the allocation policy:

Al
i(s) = min{s− li+1, a

max
i } ∀ s ∈ supp(SAi ), ∀ i ∈ {1, . . . , n} (4.8)

is feasible.

4.2.2. MILP formulation of the selective 1-PDTSP with stochastic supply

Louveaux and Salazar-González [38] formulate the 1-PDTSP with stochastic demands as

a MILP in terms of the minimum and maximum scenarios. We use the li and ui of the

implicit 1-PDA to formulate our problem in a similar way. The parameters and decision

variables of the selective 1-PDTSP with stochastic supply are summarized in Tables 4.2

and 4.3:

Table 4.2. Decision variables of the selective 1-PDTSP with stochastic supply

Decision variables

Q capacity of the vehicle

Yjk binary variable indicating whether node j is assigned to position k

Lk amount of food sufficient to provide the minimum allocation to agencies in po-

sitions beyond position k

Uk maximum possible load upon departure from the node in position k

Xj1j2 binary variable indicating whether the edge from j1 to j2 is used in the solution
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Table 4.3. Parameters of the selective 1-PDTSP with stochastic supply

Parameters

D set of donors, all of which must be visited

A set of agencies, from which a (possibly empty) subset is chosen for inclusion

N set of all donor and agency nodes, indexed by j ∈ N ; N = D ∪A

N 0 set of all donor and agency nodes and the depot (denoted by “0”); N 0 = N ∪{0}

p number of positions to which the nodes in N 0 are assigned, indexed by k ∈

{0, . . . , p}; p = |N |

l̃j least amount by which the load can change due to visiting node j: if node j is a

donor, l̃j is its minimum donation, dmin; if node j is an agency, l̃j is the negative

of its minimum allocation, −amin; at the depot, l̃0 = 0

ũj greatest amount by which the load can change due to visiting node j: if node j

is a donor, ũj is its maximum donation, dmax; if node j is an agency, ũj is the

negative of its maximum allocation, −amax; at the depot, ũ0 = 0

tj1j2 travel time of the edge from node j1 to node j2; should be interpreted as the sum

of travel time between the nodes and the time required for collection or allocation

at j2

T upper bound on total travel time

Since the route is not fixed a priori, we cannot use segment-based indexing. Instead,

we consider a set of donors D, the elements of which are denoted D1, D2, . . . , D|D| and

indexed by D ∈ D, as well as a set of agencies A, the elements of which are denoted

A1, A2, . . . , A|A| and indexed by A ∈ A. The set of all nodes (other than the depot) is
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N = D∪A; the set of all nodes including the depot is N 0 = N ∪{0}. The symbols dmin,

dmax, amin, and amax are associated with nodes instead of segments.

Let the binary decision variable Yjk equal 1 if node j is assigned to position k ∈

{1, . . . , p}, where p = |N |. Since including agencies is optional, the route may not use

all p positions. In this case, unused positions at the end of the route are assigned to the

depot. Two parameters, denoted l̃j and ũj, are associated with each node, respectively

representing the least and greatest amounts by which the load can change at node j. If

node j is a donor, l̃j = dmin
j and ũj = dmax

j . If node j is an agency, l̃j = −amin
j , and

ũj = −amax
j . For the depot, l̃0 = ũ0 = 0.

In the implicit 1-PDA, li represents the minimum load upon arrival to Segment i.

In the selective 1-PDTSP with stochastic supply, the variable Lk represents a load that

ensures survivability for the nodes in positions beyond k. The variable Uk represents the

maximum load upon departure from the node in position k.

An optimal solution to the 1-PDTSP with stochastic supply minimizes capacity sub-

ject to the constraint that the total travel time not exceed the parameter T . Let the

binary decision variable Xj1j2 equal 1 if edge (j1, j2) is used in the route. Let tj1j2 denote

the travel time of edge (j1, j2), which includes the time required for collection or allocation

at j2.
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Minimize Q (4.9a)

subject to

p∑
k=1

Yjk = 1 j ∈ D (4.9b)

p∑
k=1

Yjk ≤ 1 j ∈ A (4.9c)

∑
j∈N 0

Yjk = 1 k ∈ {1, . . . , p} (4.9d)

Y0k ≤ Y0(k+1) k ∈ {1, . . . , p− 1} (4.9e)

Lk−1 ≥ Lk −
∑
j∈N

Yjk l̃j k ∈ {1, . . . , p} (4.9f)

Uk ≥ Uk−1 +
∑
j∈N

Yjkũj k ∈ {1, . . . , p} (4.9g)

0 ≤ Lk ≤ Uk ≤ Q k ∈ {0, . . . , p} (4.9h)

X0j ≥ Yj1 j ∈ N (4.9i)

Xj0 ≥ Yjp j ∈ N (4.9j)

Xj1j2 ≥ Yj1k + Yj2(k+1) − 1 k ∈ {1, . . . , p− 1}; j1 ∈ N , j2 ∈ N 0 : j1 6= j2

(4.9k)∑
j1∈N 0

∑
j2∈N 0:j1 6=j2

tj1j2Xj1j2 ≤ T (4.9l)

Yjk ∈ {0, 1} j ∈ N 0, k ∈ {1, . . . , p} (4.9m)

Xj1j2 ∈ {0, 1} j1 ∈ N 0, j2 ∈ N 0 : j1 6= j2 (4.9n)
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Objective (4.9a) minimizes the vehicle capacity.

Constraints (4.9b) through (4.9e) govern the assignment of nodes to positions in the

route. Constraints (4.9b) require each donor to be assigned to exactly one position.

Constraints (4.9c) require each agency be assigned to at most one position. Constraints

(4.9d) require each position in the route to be assigned to exactly one node, which may

be a donor, an agency, or the depot. Constraints (4.9e) ensure that, once the vehicle has

returned to the depot, it persists at the depot. Persistence at the depot represents the

end of the route.

Constraints (4.9f) calculate an upper bound on the minimum intermediate load at

each position. Constraints (4.9f) adapt Constraints (4.7c) of the implicit 1-PDA to the

node-based structure of the selective 1-PDTSP with stochastic supply. If the node in

position k is a donor, the constraint is:

Lk−1 ≥ Lk − dmin (4.10)

That is, the minimum intermediate load at position k− 1 can be up to dmin less than the

minimum intermediate load at position k because at least dmin is collected at position k.

If the node in position k is an agency, the constraint is:

Lk−1 ≥ Lk + amin (4.11)

That is, the minimum intermediate load at position k − 1 must be at least amin greater

than the minimum intermediate load at position k because at least amin must be allocated

to the agency at position k.
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Constraints (4.9g) calculate an upper bound on the maximum load at each position.

Constraints (4.9g) adapt Constraints (4.7d) of the implicit 1-PDA to the node-based

structure of the selective 1-PDTSP with stochastic supply. If the node in position k is a

donor, the constraint is:

Uk ≥ Uk−1 + dmax (4.12)

That is, the maximum possible load at position k must be at least dmax greater than at

position k − 1. If the node in position k is an agency, the constraint is:

Uk ≥ Uk−1 − amax (4.13)

That is, the maximum possible load can decrease no more than amax at position k, because

the agency cannot accept more.

Constraints (4.9h) ensure that, when allocating at an agency, Uk does not decrease

below the minimum intermediate load Lk. Furthermore, they ensure that the minimum

intermediate load is non-negative. Constraints (4.9h) also establish the relationship be-

tween the Uk and the capacity Q.

Constraints (4.9i), (4.9j), and (4.9k) relate position assignments to edges. Constraints

(4.9i) determine which edge is used to leave the depot by identifying the node assigned

to in the first position. Constraints (4.9j) relate the edge used to return to the depot

with the node in the final position of the node sequence. Constraints (4.9k) determine all

other edges used in the node sequence by examining which nodes are visited in consecutive

positions. Note that, if not all agencies are included, Constraints (4.9k) determine which

edge is used to return to the depot instead of Constraints (4.9j).
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Constraint (4.9l) restricts the total travel time of the node sequence to be no more

than T .

Constraints (4.9m) and (4.9n) declare the Yjk and the Xj1j2 , respectively, as binary

decision variables.

4.2.3. Analytical results

In this subsection, we present analytical results regarding optimal solutions to the selective

1-PDTSP with stochastic supply. We use these properties in the case study in §4.4.

Theorem 4.2.2 provides a guideline regarding the insertion of agencies.

Theorem 4.2.2. Inserting an agency adjacent to the depot cannot decrease the min-

imum capacity.

Inserting an agency is beneficial only if it allows capacity to be reused under the

maximum scenario. That is, under the maximum scenario, if visiting an agency allows

donations that have already been collected to be removed from the vehicle and if the freed

capacity is occupied by donations collected later in the route, then the presence of the

agency on the route reduces the required capacity by as much as the amount of capacity

reused.

Agencies adjacent to the depot cannot allow capacity to be reused because they are

visited either before or after all donations are collected. Therefore, we can eliminate

from consideration solutions in which an agency is the first or last node visited. Due

to Theorem 4.2.2, we do not consider agency insertions at the beginning or end of FRP

routes in the insertion heuristics presented in §4.3 and Appendix D.
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With Theorem 4.2.3, we obtain a lower bound on the optimal vehicle capacity for a

given set of donors and agencies. Since agencies reduce the required capacity through

reuse, adding an agency cannot reduce the required capacity by more than its maximum

allocation.

Theorem 4.2.3. For any route of the set of donors D and the set of agencies A, a

bound on the minimum required capacity is:

Q∗ ≥
∑
D∈D

dmax
D −

∑
A∈A

amax
A (4.14)

For a particular instance of the selective 1-PDTSP with stochastic supply, the restric-

tion on maximum total travel time, Constraint (4.9l), may limit the number of agencies

that can be inserted in a route. In that case, Corollary 4.2.4 provides a tighter bound.

Corollary 4.2.4. If at most ρ agencies of the set A may be inserted into an FRP

route of the set of donors D, let Aρ ⊂ A represent the ρ agencies with the highest values

of amax
j . Then,

Q∗ ≥ Qlb(ρ) =
∑
D∈D

dmax
D −

∑
j∈Aρ

amax
j (4.15)

We refer to Qlb(ρ) as the ρ-agency lower bound on capacity. In the case study, we

demonstrate that, for realistic instances, the ρ-agency lower bound is tight. Thus, we

can use it to estimate the benefit of inserting agencies on a FRP route and to identify

instances in which the heuristic solution may be poor.
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4.3. Heuristic method for inserting agencies into existing routes

We now consider the restricted problem of inserting agencies into existing FRP routes.

This problem interests us for two reasons:

First, food banks and donors are accustomed to the routes that already exist. The

food bank would prefer to continue to visit donors at approximately the same time as

in the current schedule, so it would be preferable to add agencies to the route without

changing the order in which donors are visited.

Second, although it is possible to solve instances of the selective 1-PDTSP with sto-

chastic supply with a MILP solver, food bank staff do not have optimization tools avail-

able, nor do they have experience using them. Even if a solver were available, many

realistic instances cannot be solved in a reasonable amount of time (see §4.4.4).

We develop a simple heuristic method for inserting agencies into existing FRP routes

that requires no use of technology and is not sensitive to problem size. Our heuristic

approach is based on the intuition that including agencies permits the capacity reduction

by allowing capacity reuse, so we call it the capacity reuse insertion heuristic (CRIH). In

the computational study in §4.4.4, we evaluate the “cost” of not solving the full problem

in terms of the difference in required capacity between CRIH and optimal solutions.

In §4.3.1, we define the estimated reuse contribution of an agency, the value that is

used in the CRIH to rank potential insertions. We formally present the steps of the CRIH

in §4.3.2. CRIH is a myopic heuristic that inserts one agency at a time into the existing

route. It does not reoptimize the route, nor does it consider potential future insertions

when it chooses an insertion.
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4.3.1. Estimated reuse contribution of an agency

For the inclusion of an agency to reduce capacity, donations must be collected before and

after visiting the agency. In the present subsection, we first consider how to quantify

agencies’ contribution to capacity reduction when the entire route is given. Then, we

develop an expression to estimate an agency’s contribution before it is inserted into a

route.

The amount of capacity reuse due to an included agency is limited not only by the

maximum allocation at the agency, but also by the minimum intermediate load of the

next segment. Since calculating the minimum intermediate loads and the initial load is

cumbersome analytically (although easy numerically), we introduce the Zero Minimum

Intermediate Load (ZMIL) condition.

Definition 4.3.1. The Zero Minimum Intermediate Load (ZMIL) condition

is satisfied for a route if the minimum intermediate load is zero (that is, l∗i = 0) at all

segments.

The ZMIL condition is obviously satisfied if amin = 0 for the agency being inserted.

Less restrictively, it is also fulfilled if the combined minimum donation of the donors imme-

diately preceding the agency is at least amin. Even if the ZMIL condition is not satisfied,

for realistic instances of the selective 1-PDTSP with stochastic supply, the minimum in-

termediate load is often near zero because parameter values for donors are generally much

greater than the corresponding values for agencies (as demonstrated in §4.4.3).

For a given route, the maximum reuse contribution of a set of consecutive agen-

cies, denoted RAi,i+k for the set of consecutive agencies Ai,i+k = {Agency i,Agency i +
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1, . . . ,Agency i+k} represents the maximum possible contribution of a set of consecutive

agencies to the reduction of Q by capacity reuse. (Since the agencies are consecutive, it

must be that Donors i + 1, . . . , i + k are dummy donors.) The maximum reuse contri-

bution of a set of consecutive agencies can be no more than the sum of their maximum

allocations
∑i+k

ι=i a
max
ι . However, if (under the maximum scenario) fewer than

∑i+k
ι=i a

max
ι

units of food are collected before Agency i or after Agency i + k, the maximum reuse

contribution of the set of consecutive agencies is less.

Definition 4.3.2. If the ZMIL condition is satisfied, then the maximum reuse

contribution of the set of consecutive agencies Ai,i+k is defined as the maximum amount

by which the set can decrease the required capacity by allowing capacity reuse):

RAi,i+k = min

{
i+k∑
ι=1

amax
ι ,

i∑
ι=1

dmax
ι −

i−1∑
ι=1

Amax
ι ,

n∑
ι=i+k+1

dmax
ι −

n∑
ι=i+k+1

Amax
ι

}
(4.16)

where Amax
ι represents the allocation at Agency ι under the maximum scenario.

Since the maximum reuse contribution of an agency can be no more than the maximum

allocation, if RAi,i+k =
∑i+k

ι=i a
max
ι for all sets of consecutive agencies on the route, then

no other node sequence allows for a further reduction in capacity.

Theorem 4.3.3. For a given route of donors and agencies, if the ZMIL condition

is satisfied and RAi,i+k =
∑i+k

ι=i a
max
ι for all sets of consecutive agencies, then the node

sequence in the route obtains the minimum vehicle capacity Q∗ possible for that set of

nodes.

Theorem 4.3.3 motivates us to seek an insertion method that maximizes the reuse

contribution of agencies. However, the definition of the maximum reuse contribution
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assumes that the entire route is known, so using RAi,i+k directly as the basis of a heuristic

would require that all agencies be inserted simultaneously. To myopically insert agencies

one at a time, the CRIH makes decisions using a estimated version of RAi,i+k for individual

agencies. The metric used for the CRIH is an estimate because it assumes that the ZMIL

condition is satisfied and that Amax
i = amax

i (that is, that the allocation at Agency i under

the maximum scenario is its maximum allocation).

Definition 4.3.4. For a given route of donors and agencies, the estimated reuse

contribution of agency A if inserted on edge e, denoted R̃Ae, is the approximate amount

by which the presence of A would decrease the required capacity if it were inserted on edge

e:

R̃Ae = min

amax
A ,

i−(Ae)∑
ι=1

dmax
ι −

i+(Ae)−1∑
ι=1

amax
ι ,

n∑
ι=i+(Ae)

dmax
ι −

n∑
ι=i−(Ae)

amax
ι

 (4.17)

Where Ae represents the set of consecutive agencies adjacent to edge e, i−(Ae) is the index

of the last donor in the route before Ae, and i+(Ae) is the is the index of the first donor

in the route after Ae. If neither endpoint of e is an agency, then Ae = ∅, i−(Ae) is the

index of the tail of e, and i+(Ae) is the index of the head of e.

4.3.2. CRIH algorithm

A feasible route including all donors is provided to the CRIH as an input. The heuristic

repeatedly identifies the agency insertions with the greatest value of R̃Ae, then myopically

applies the one with the lowest insertion cost. The values of R̃Ae for agencies that have

not yet been inserted are updated after each insertion, since the ability of an agency to
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allow capacity reuse depends on the agencies before and after it. The heuristic continues

until no feasible insertions with positive R̃Ae values remain. We summarize the steps of

the CRIH below.

Step 1: Update: Calculate C, the total travel time of the current route.

Step 2: Identify best insertion point for each agency: For every agency k not

on the current route, find edge e that maximizes R̃ke such that the insertion

cost cke ≤ T − C; denote it e∗k. If there are multiple such edges, let e∗k be

one with minimum cke and go to Step 3. If there are no such edges for any

agency, return the current route as the heuristic solution.

Step 3: Identify best agency to insert: Let k∗ = argmaxkR̃ke∗k
. Insert agency

k∗ on edge e∗k∗ . If there are multiple such agencies, insert one with minimum

insertion cost ck∗e∗
k∗

. Go to Step 1.

4.4. NIFB case study

To quantify the benefits of including agencies on FRP routes and to provide imple-

mentation guidance, we present a case study based on data provided by NIFB. We use

optimal solutions for more than 3,000 instances of the selective 1-PDTSP with stochastic

supply to obtain insights regarding the insertion of agencies into FRP routes and evaluate

the performance of CRIH.

4.4.1. NIFB operations

Our experiment is based on data provided by NIFB for donations received and food

delivered to agencies from April 2010 to April 2011. From the donations data, we obtain
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minimum and maximum donations for each donor. For each agency, we first determine

if the agency can accept weekly donations from FRP (due to its service schedule and

ability to store perishable food). Of NIFB’s more than 600 partner agencies, only 139

can potentially be included on FRP routes. Although NIFB presently includes agencies

on most FRP routes, they were not doing so during the time period for which data was

provided, and they do not formally define a minimum and maximum allocation for each

agency; thus, we use the delivery data to infer minimum and maximum allocations.

As depicted in Figure 4.3, although donor parameters cover a wide range of values

(dmin = 0, . . . , 31, dmax = 6, . . . , 138) agency parameters are much more limited (amin =

1, . . . , 10, amax = 3, . . . , 50). Furthermore, the minimum and maximum allocations at an

agency tend to be strongly correlated, since agencies that can accept a large maximum

allocation have to dedicate resources to participating in FRP, so they require a larger

minimum allocation to justify their participation.
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Figure 4.3 Parameter values of NIFB nodes

The NIFB service area is divided into four regions, referred to as North Suburban

(NS), South Suburban (SS), West Suburban (WS), and Northwest (NW). We summarize
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Table 4.4. Summary statistics for NIFB regions

NS SS WS NW

Number of donors (|D|) 34 23 49 15
Number of agencies (|A|) 38 27 48 26
Average travel time from the depot to a
donor (minutes)

31.63 54.99 24.12 17.05

Average travel time between donors (min-
utes)

33.93 32.84 28.60 24.29

Average number of agencies no more than
five minutes from a donor

0.76 1.22 1.35 1.53

Total maximum donations per total max-
imum allocations (

∑
dmax/

∑
amax)

2.28 1.24 2.43 0.49

key statistics of the regions in Table 4.4. Maps of the regions are provided in Appendix C.

Three factors distinguish the regions from one another: the availability of donations, the

geographic dispersion of donors, and the potential for inserting agencies into FRP routes.

Availability of donations. For NS, SS, and WS, donors and agencies are roughly equal

in number (that is, |D| ≈ |A|), and the donations available are sufficient to satisfy the

total demand from agencies, as measured by the ratio of total maximum donations to

total maximum allocations in Table 4.4. This should not be interpreted as a surplus of

donated food in the region: the maximum donation is not the average donation, only

perishable food is considered, and only agencies that can potentially participate in FRP

are included.

In NW, the situation is reversed: there are many more agencies than donors, and their

combined demand is greater than the total supply. Therefore, adding even a single agency

can dramatically reduce the capacity by a FRP route.

Geographic dispersion of donors. As reflected by the maps in Appendix C, every

NIFB region contains both urban and rural areas. The range of travel time from the
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depot to donors is similar for WS and NW. However, donors in NW tend to be closer to

the depot since that region includes only one large urban area, containing nearly all of

the region’s donors, while WS has donors throughout many urban areas.

Donors in NS and SS are more dispersed, as demonstrated by the average travel time

between donors in Table 4.4. However, on average, donors in SS are about 22 minutes

farther from the depot than those in NS, because SS is served by a depot that lies outside

the region.

Potential for inserting agencies into FRP routes. Every NIFB region contains

agencies that could participate in FRP, but to improve a route by inserting agencies,

agencies must lie near the route. In most regions, agencies are dispersed in approximately

the same areas as donors, providing ample opportunities for insertion. This is reflected in

the average number of agencies within 5 minutes of a donor in Table 4.4. The exception to

this is NS, in which most agencies lie in one cluster where there are no donors. Therefore,

although |D| ≈ |A| for the region as a whole, over most of the region (all of it outside the

cluster of agencies) there are many more donors than agencies.

4.4.2. NIFB challenges

NIFB includes agencies on its FRP routes to extend the capacity of its vehicles, and

thus to reduce the total number of vehicles that must be used for FRP. Currently, NIFB

includes at least one agency on each FRP route. The agencies are chosen and inserted in

an ad hoc manner. With this research, we seek to formalize the method by which agencies

are chosen and inserted by NIFB, and to inform other food banks that may wish to use

agency insertion to address the challenge of limited vehicle capacity for FRP.



www.manaraa.com

62

4.4.3. Experiment design

We use the NIFB data to construct 3,148 realistic instances of the selective 1-PDTSP

with stochastic supply. An instance comprises a set of donors D, a set of agencies A, and

a maximum total travel time T . To construct instances, we first construct sets of donors.

We then associate up to five sets of agencies (one for each possible delivery day) with

each donor set. Finally, for each combination of donor set and agency set, we generate

separate instances for each of four maximum total travel time values.

Donor sets. We construct sets of donors by applying techniques observed at food banks

to group donors into FRP routes. We refer to the donor set construction techniques as

Zone, Chain, and Destination. The donors in a Zone set are located near one another.

The set may contain all the donors in one large city or in several adjacent small cities or,

if a part of the region is sparsely populated, all of the donors in a county. The donors

included in a Chain set are all part of the same supermarket chain. Destination sets

contain all the donors that lie along a possible route from the depot to a distant donor.

In Table 4.5, we list the number of distinct donor sets chosen for each region as well

as the construction technique used to generate them. Some construction techniques are

more readily applied in certain regions; for example, although there are few donors in

NW, many of them are located far from the depot, so there are relatively more ways to

apply the Destination technique. Since the vehicles used for FRP have a capacity of 200

boxes of donations, we only consider donor sets such that QD > 200, since those are the

only routes for which NIFB has an incentive to reduce the required capacity by inserting

agencies.
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Table 4.5. Donor sets by region and construction technique

Total Zone Chain Destination

NS 39 18 15 6
SS 31 11 10 10
WS 71 32 28 11
NW 13 4 3 6

Agency sets. We associate agency sets with the donor sets by identifying all agencies

near the donors. We then use data about the agencies’ availability to receive deliveries to

generate up to five distinct agency sets for each donor set, one for each possible delivery

day. The agency sets vary in size from 1 to 16 agencies, and the resulting sets of donors

and agencies vary in size from 5 to 24 nodes, as summarized in Table 4.6.

Table 4.6. Composition of node sets in NIFB experiment, by number of
donors and agencies

|A|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

|D
|

4 4 4 6 10 1 6 2 0 3 3 1 0 4 2 0 46
5 15 24 29 20 11 9 2 5 3 2 2 0 1 0 0 123
6 12 15 24 14 14 10 7 7 6 7 4 2 2 0 0 124
7 14 20 19 26 18 13 9 5 5 8 4 2 7 3 4 157
8 12 16 29 20 16 17 14 4 3 4 2 3 4 6 0 150
9 4 7 16 10 21 14 6 5 6 3 5 1 3 0 1 102
10 2 4 9 9 15 17 11 9 3 3 1 0 2 0 0 85

Total 63 90 132 109 96 86 51 35 29 30 19 8 23 11 5 787

Maximum total travel time. For each set of donors and agencies, we calculate the

travel time of the TSP tour of the donors (denoted TD) and generate instances with four

values of the maximum total travel time: T = TD + 30, TD + 60, TD + 90, TD + 120. We

assume that the stopping time at any node is 20 minutes, so increasing the maximum
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travel time by 30 minutes is roughly equivalent to allowing the insertion of one nearby

agency.

4.4.4. Computational results

We solve the set of instances described in §4.4.3 using CPLEX 12.5.1 with one hour of

CPU time, the same time limit used by Louveaux and Salazar-González [2009]. Only

61% of the instances can be solved to optimality within this time limit. Instance size

(measured by the number of nodes) and total available travel time are the factors that

we find to most influence solution time.

Table 4.7. Fraction of instances solved to optimality within time limit

Maximum total travel time T

|N | TD+30 TD+60 TD+90 TD+120

5 100% 100% 100% 100%
6 100% 100% 100% 100%
7 100% 100% 100% 100%
8 100% 100% 100% 100%
9 100% 100% 100% 100%
10 100% 100% 100% 100%
11 100% 99% 100% 100%
12 67% 51% 60% 91%
13 48% 22% 30% 54%
14 35% 17% 12% 35%
15 19% 12% 4% 5%
16 27% 20% 5% 0%
17 34% 20% 11% 0%
18 25% 14% 7% 0%
19 17% 8% 0% 0%
20 11% 0% 0% 0%
21 0% 0% 0% 0%
22 0% 0% 0% 0%
23 0% 0% 0% 0%
24 0% 0% 0% 0%
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As summarized in Table 4.7, it is generally possible to obtain an optimal solution for

instances with 6 to 10 nodes within the time limit, but as the number of nodes increases,

the ability of CPLEX to obtain an optimal solution rapidly diminishes. CPLEX fares

better for instances with T = TD + 30; such instances have a smaller feasible region due

to the stricter limit on total travel time.

As a consequence of the properties of the instances for which an optimal solution is

available, we restrict our attention to sets of donors and agencies such that |N | ≤ 11 and

such that an optimal solution was obtained for all four values of T . There are 367 such

sets in the experiment, comprising 1,468 total instances.

Benefits of including agencies. We first consider a set of questions regarding the

benefits of including agencies on FRP routes.

• Under which circumstances does including agencies on a FRP route yield a sig-

nificant benefit?

• Which agencies should be recruited to participate in FRP?

As depicted in Figure 4.3, maximum allocation values are generally much smaller than

maximum donation values, so one might expect only a modest decrease in required capac-

ity by including agencies on a route. Furthermore, despite the randomness of donations,

agencies need consistency in order to participate in FRP. Ensuring the minimum alloca-

tion for an agency may require an initial load, potentially increasing the required capacity.

However, we find that the benefits of including agencies can be substantial, even with a

modest increase in total travel time, if many agencies are available for inclusion.
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Observation 4.4.1. Including agencies is an effective intervention to reduce required

capacity. Agency inclusion is more beneficial as the total available travel time increases

and as the number of available agencies increases.

We summarize the average benefit for varying maximum total travel time T and

number of available agencies |A| in Table 4.8. As expected, the average reduction in

capacity improves as T increases. This only fails to occur for very small values of |A|, since

there are no additional agencies to include with the available travel time. The reduction

in required capacity also improves as the number of available agencies increases; clearly,

if there are more agencies from which to choose, a better solution can be obtained, even

if the travel time constraint only permits the inclusion of one or two.

Table 4.8. Average reduction in capacity as a percentage of QD for
varying maximum total travel time T and number of available agencies |A|

|A|
T 1 2 3 4 5 6 7

TD + 30 9% 10% 11% 10% 11% 11% 17%
TD + 60 9% 14% 17% 17% 20% 20% 29%
TD + 90 9% 14% 20% 22% 26% 30% 38%
TD + 120 9% 14% 21% 23% 29% 36% 43%

To estimate the capacity of the optimal solution, Q∗, we can calculate the ρ-agency

lower bound on capacity, Qlb(ρ), introduced in Corollary 4.2.4. This bound is an ap-

proximation that uses no information other than maximum distribution and allocation

values, ignoring geographic information such as likely routes among the donors and the

availability of agencies to include on donor routes.
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One would expect the efficacy of the the ρ-agency lower bound to be related to the

geography of the donor set or the region. However, we find that Qlb(ρ) is an effective

predictor of Q∗ in all geographic settings.

Observation 4.4.2. NIFB can obtain a high-quality estimate of the decrease in re-

quired capacity by calculating Qlb(ρ). This measure uses no information about the available

agencies beyond the ρ largest maximum allocation values. We observe this across all types

of donor sets and in all regions.

For each instance, we compare the solution obtained with maximum total travel time

T ∈ {TD + 30, TD + 60, TD + 90, TD + 120} to the ρ-agency lower bound on capacity

obtained by ρ ∈ {1, 2, 3, 4}, respectively. Although Qlb(ρ) is a lower bound on Q∗ for

ρ = 1 and ρ = 2 (since the stopping time is 20 minutes at all nodes and all edge travel

times are positive), this is not the case for ρ = 3 and ρ = 4. In Table 4.9, we summarize

the average absolute value of the gap between Q∗ and Qlb(ρ) for each of the regions and

donor set construction techniques. We do not report a gap for regions and construction

techniques for which there were no sets of donors and agencies such that an optimal

solution was available for all four values of T . This occurs for all sets in NW because

many agencies are clustered near the warehouse, so they are included in nearly all of the

instances for the region, causing the number of nodes to be too large to obtain an optimal

solution within the time limit.

As reflected in Table 4.9, the gap between Q∗ and Qlb(ρ) is small and shows little

variation among regions or donor set construction techniques. Although we investigated

several geographic characteristics of instances as potential predictors of the benefits of
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Table 4.9. Average absolute gap between Q∗ and Qlb(ρ) as a percentage
of QD by region and donor set construction technique

Donor set construction technique

Region Zone Chain Destination

NS 0.5% 0.5% 0.8%
SS 0.3% 1.1% 2.1%
WS 0.1% 0.3% 0.0%
NW — — —

including agencies, such as node density and the average distance of nodes from the

depot, we found none of these to have a significant impact, either positive or negative,

on the benefit of reducing capacity by including agencies or on the predictive ability of

Qlb(ρ).

It is possible to construct instances for which geography inhibits agency inclusion

as an effective intervention. For example, if every agency in an instance were at least

T − TD away from the nearest donor, it would be impossible to include even one agency

on the FRP route. However, our numerical results demonstrate that, in realistic settings,

geography has no discernible impact on average.

Table 4.8 clearly demonstrates that it is beneficial to have many agencies available

for inclusion. This implies that NIFB should consider all eligible agencies for inclusion.

However, the selective 1-PDTSP with stochastic supply becomes more difficult to solve

as the number of nodes increases, which is precisely the context in which solving the

problem to optimality is most valuable. Fortunately, we find that NIFB can realize the

benefits of agency inclusion while considering relatively few agencies, chosen a priori by

their maximum allocation.
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Observation 4.4.3. NIFB should emphasize the inclusion of agencies that can accept

a large maximum allocation.

We support Observation 4.4.3 by comparing Q∗ and Qlb(ρ) for instances with many

agencies. Since Qlb(ρ) uses no information about agencies other than their maximum

allocations, the small gap we observe between Q∗ and Qlb(ρ) reflects the primacy of the

value of amax in predicting the benefit of agency inclusion.

In 85% of instances, Q∗ = Qlb(ρ); on average, the absolute value of the difference

between Q∗ and Qlb(ρ) as a percentage of QD is less than 1%. We summarize the average

absolute gap between Q∗ and Qlb(ρ) in Table 4.10. For instances with many available

agencies and a high maximum total travel time, the average absolute gap between Q∗

and Qlb(ρ) is larger because, for some instances in which agencies are located very close

to donors or along likely routes between donors, it is possible to insert four agencies if

T = TD + 90 or five agencies if T = TD + 120. In practice, instead of considering many

agencies, food banks should consider a few large agencies, especially those that lie close

to donors or along likely routes between donors.

Table 4.10. Average absolute gap between Q∗ and Qlb(ρ) as a percentage
of QD for varying maximum total travel time T and number of available

agencies |A|

|A|
T 1 2 3 4 5 6 7

TD + 30 0.5% 0.1% 0.6% 0.6% 0.6% 0.0% 0.0%
TD + 60 0.0% 0.2% 0.5% 0.2% 0.5% 0.0% 0.0%
TD + 90 0.0% 0.0% 0.4% 0.8% 1.8% 3.0% 0.6%
TD + 120 0.0% 0.0% 0.0% 0.0% 2.5% 3.3% 2.4%
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Performance of CRIH. We propose CRIH to give decision-makers specific advice re-

garding the insertion of agencies into existing FRP routes. We use the computational

study to investigate the following questions about CRIH:

• How does CRIH perform compared to the optimal solution?

• How does CRIH perform compared to other heuristic insertion techniques applied

to the same initial route of donors?

• Under what conditions could CRIH provide a poor solution?

CRIH is a myopic heuristic for inserting agencies into existing FRP routes. We com-

pare the optimal solution of the selective 1-PDSTP with stochastic supply with CRIH

applied to an inital donor route designed to minimize distance. Since CRIH is delib-

erately designed to be applied by humans to routes that they have developed without

optimization tools, we obtain initial donor routes by implementing a heuristic developed

in cognitive science to model how humans solve the TSP [40].

To test the “cost” of not including the donor routing decision and of myopically

inserting agencies, we consider the performance of CRIH on the instances for which an

optimal solution was obtained.

Observation 4.4.4. For the NIFB case study, CRIH provides near-optimal solutions

with an average optimality gap of less than 0.5%.

We summarize the performance of CRIH in Tables 4.11 and 4.12. The average op-

timality gap of CRIH applied to the heuristic donor routes is 0.46%. CRIH performs

worse on instances with many agencies and high maximum total travel time. This occurs
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because the set of feasible solutions to the selective 1-PDTSP with stochastic supply in-

creases with T , but CRIH explores only a small part of that space because (i) it starts

from a single initial route and (ii) given a set of insertions that have the same estimated

reuse, it chooses the one with the least insertion cost even if the available travel time is

plentiful. The optimality gap is less than 1% in 89% of the instances in the case study,

and it is less than 5% in 98% of instances. In Table 4.11, we see that significant gaps

occur, on average, when there are many agencies to choose from; however, considering so

many agencies is inefficient (see Observation 4.4.3).

In Appendix D, we describe several other insertion algorithms that we find to have

worse performance than CRIH.

Table 4.11. Average optimality gap of CRIH applied to
heuristically-generated donor routes for varying maximum total travel

time T and number of available agencies |A|

|A|
T 1 2 3 4 5 6 7

TD + 30 0.5% 0.5% 0.5% 0.3% 0.5% 0.4% 0.0%
TD + 60 0.1% 0.5% 0.6% 0.5% 2.0% 0.4% 0.7%
TD + 90 0.1% 0.2% 0.3% 0.7% 0.9% 0.9% 2.2%
TD + 120 0.1% 0.2% 0.2% 0.4% 1.1% 2.0% 5.0%

Table 4.12. Maximum optimality gap of CRIH applied to
heuristically-generated donor routes for varying maximum total travel

time T and number of available agencies |A|

|A|
T 1 2 3 4 5 6 7

TD + 30 15% 16% 16% 5% 11% 3% 0%
TD + 60 1% 12% 20% 12% 21% 2% 1%
TD + 90 1% 5% 4% 6% 7% 4% 4%
TD + 120 1% 5% 4% 6% 6% 9% 9%
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Some instances with the lowest value of maximum total travel time (T = TD + 30)

have large gaps because the travel time of the initial route is much greater than TD, the

total travel time of the optimal TSP solution. Since the stopping time at all agencies

is 20 minutes, T = TD + 30 implies that 10 minutes are available to divert from the

optimal TSP donor route to travel to an agency. If the initial donor route is more than

10 minutes longer than TD, it is impossible to insert an agency for T = TD + 30. If

the difference is less than 10 minutes, agency insertion is feasible, but fewer agencies are

reachable than would be if 10 minutes were available. For instances with more than 30

minutes of additional travel time, the initial donor route had little impact.

Table 4.13. Average absolute gap between Q∗ and Qlb(ρ) as a percentage
of QD for instances in which the optimality gap of CRIH is at least 5%

|A|
T 1 2 3 4 5 6 7

TD + 30 0.0% 0.3% 0.4% 1.5% 0.0% — —
TD + 60 — 0.0% 0.0% 0.0% 0.0% — —
TD + 90 — 0.0% — 1.9% 0.0% — —
TD + 120 — 0.0% — 0.0% 3.1% 3.3% 3.0%

Due to its ease of implementation, CRIH is well-suited to the motivating context of

our problem. Although it is myopic, it works well for the NIFB case study because the

minimum donation values are generally greater than the minimum allocation values, so

the ZMIL condition is approximately satisfied. However, there exist instances in which

a more sophisticated approach is needed to obtain a high-quality solution. To identify

such instances, we recommend that practitioners compare the CRIH solution to Qlb(ρ):

if Qlb(ρ) is much less than the capacity of the CRIH solution, then the CRIH solution is

potentially far from optimal.
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As stated in Observation 4.4.3, Qlb(ρ) is an excellent estimator of the optimal capacity.

In Table 4.13, we report the average absolute optimality gap of Qlb(ρ) as a percentage of

QD for instances where the CRIH solution exhibits a large optimality gap (at least 5%).

For the entire range of such instances, Qlb(ρ) is close to Q∗, with an average gap of less

than 1%.

The computational results presented in this section demonstrate that agency inclu-

sion is an effective and practical intervention for FRP. For a wide variety of realistic

instances, the strategic inclusion of agencies allows for a significant reduction in vehicle

capacity. Furthermore, we provide food banks with the tools necessary to implement this

intervention: Our analytical results help identify which agencies should be considered for

insertion, while CRIH makes near-optimal agency insertion decisions for existing FRP

routes through a simple procedure.
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CHAPTER 5

The 1-PDA-as

The Greater Chicago Food Depository (GCFD), the food bank that serves Chicago and

suburban Cook County, Illinois, has developed a novel approach to provide its agencies

with frequent deliveries of perishable foods. Few GCFD agencies own a large vehicle, so

most contract a truck to make deliveries from the food bank warehouse approximately once

per month. This limits the agencies’ ability to offer perishable food, since any perishable

food they receive must be distributed to clients quickly or, if possible, refrigerated or frozen

and then rationed until the next delivery. To provide frequent deliveries of perishable food

to such agencies, GCFD includes agencies on FRP routes.

Note the contrast between the implementation of FRP at NIFB and GCFD. As at

NIFB, the primary purpose of FRP at GCFD is to collect donations. However, GCFD

places greater emphasis on allocating donations to agencies. At NIFB, FRP allocations are

supplemental to scheduled deliveries from the food bank, while at GCFD, FRP allocations

are essential to agency operations.

We contend that the system developed by GCFD, which we deem “agency-supporting

FRP,” could be beneficial for other food banks, in particular those that serve densely-

populated urban areas. We formulate a problem, the one-commodity pickup and delivery

allocation problem for agency-supporting FRP (1-PDA-as), which finds an allocation pol-

icy for a given FRP route that maximizes the expected donations collected, while fulfilling

specified service requirements at donors and agencies. Unlike the prevailing system at
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GCFD, in which all donors are usually visited before any agencies, we consider general

FRP routes in which donors and agencies can be visited in any order.

In §5.1, we formally define the 1-PDA-as as a stochastic program. In §5.2, we develop

a procedure to solve the 1-PDA-as to optimality by solving a series of linear programs.

In §5.3, we present analytical results regarding the optimal solution of a class of 1-PDA-

as instances, then use these results as the basis for a heuristic procedure. In §5.4, we

analyze computational results to obtain insights about donor and agency parameters,

route structure, and the quality of solutions generated by our heuristic.

5.1. Formulation of the 1-PDA-as

In the present section, we formulate the 1-PDA-as as a stochastic program. The

objective of the problem is to maximize the expected total donations collected for a given

route. A solution to the 1-PDA-as comprises the initial load and the allocation policy

at each agency. The 1-PDA-as is a generalization of the 1-PDA (Formulation (4.1))

with three additional parameters (described in §3.2): the guaranteed collection ci, the

sustaining allocation asusti , and αi, the minimum probability of receiving the sustaining

allocation. Furthermore, note that since vehicle capacity is a parameter, we denote it Q

(instead of Q). In Tables 5.1 and 5.2, we summarize the parameters and decision variables

of the 1-PDA-as.
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Table 5.1. Parameters of the 1-PDA-as

Parameters

Q capacity of the vehicle, a positive integer

n number of segments, indexed by i ∈ {0, 1, . . . , n}; “0” represents the depot

Di donation from Donor i, a discrete random variable

ci guaranteed collection at Donor i

amin
i minimum allocation at Agency i

amax
i maximum allocation at Agency i

asusti sustaining allocation at Agency i

αi minimum probability that asusti be allocated at Agency i

Table 5.2. Decision variables of the 1-PDA-as

Decision variables

S0 initial load, a non-negative integer

Ci quantity of food collected from Donor i, a discrete integer-valued random vari-

able; Ci 4 Di

Ai(·) allocation policy at Agency i; defined for all s ∈ supp(SAi )

Ai long-run allocation at Agency i; Ai = Ai(SAi )

SDi load upon arrival to Donor i, a discrete integer-valued random variable

SAi load upon arrival to Agency i, a discrete integer-valued random variable

The philosopher and game designer Ian Bogost remarks, “While we often think that

rules always limit behavior, the imposition of constraints also creates expression” [9]. Such
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is the case when comparing the 1-PDA-as with the 1-PDA: the additional parameters

present in the 1-PDA-as allow GCFD to express operational goals that are crucial to the

success of its version of FRP. Unlike the 1-PDA, vehicle capacity is limited in the 1-PDA-

as; specifying a guaranteed collection ensures that donations are collected consistently.

The additional agency parameters are important because GCFD agencies depend on FRP

allocations. To be clear, we do not suggest that a food bank employing the 1-PDA-as

enter into a contract-like agreement with donors or agencies based on these parameters.

Rather, their presence in the model provides the food bank an opportunity to improve

the experience of participating in FRP for its donor and agency partners.

maximize

[
n∑
i=1

ECi

]
(5.1a)

subject to Ci ≥ min {Di, ci} i ∈ {1, . . . , n} (5.1b)

SAi ≤ Q i ∈ {1, . . . , n} (5.1c)

SAi = SDi + Ci i ∈ {1, . . . , n} (5.1d)

SDi+1 = SAi − Ai i ∈ {1, . . . , n} (5.1e)

Ai(s) ≤ s ∀s ∈ supp(SAi ) i ∈ {1, . . . , n} (5.1f)

amin
i ≤ Ai ≤ amax

i i ∈ {1, . . . , n} (5.1g)

Pr{Ai ≥ asusti } ≥ αi i ∈ {1, . . . , n} (5.1h)

SD1 = S0 (5.1i)

S0 ∈ Z+
0 (5.1j)
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The objective function (5.1a) maximizes the expected total donations collected on the

FRP route. (This is the summary value C defined in §3.3.)

Constraints (5.1b) ensure that the guaranteed collection is accepted if the donor offers

at least that amount of food. Otherwise, the collection is determined by the Maximum

Collection Policy, considering the guaranteed collection at later donors (as explained in

full §5.2.2). Constraints (5.1c) bound the load after collecting the donation by the vehicle

capacity.

Constraints (5.1d) and (5.1e) describe the movement of food in and out of the vehicle.

Constraints (5.1d) calculate the load after visiting the donor in terms of the load upon

arrival to the donor and the collection. Constraints (5.1e) express the load after visiting

the agency in terms of the load upon arrival to the agency and the long-run allocation.

Constraints (5.1f) state that allocation at an agency may not exceed the load upon

arrival to the agency. Constraints (5.1g) and (5.1h) govern allocations by constaining the

long-run allocation. Constraints (5.1g) force allocations to be no less than the minimum

allocation and no more than the maximum allocation. Constraints (5.1h) ensure that each

agency receives its sustaining allocation with at least the required minimum probability.

Constraint (5.1i) defines SD1 as a random variable equal to the initial load S0 with prob-

ability 1. This definition is necessary for Constraints (5.1d) to be well-defined. Constraint

(5.1j) declares the initial load S0 to be a non-negative integer.
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5.2. Solving the 1-PDA-as to optimality

Dynamic programming is often applied to stochastic programs that resemble Formu-

lation (5.1). In §5.2.1, we explain why that method and similar ones cannot be applied

to the 1-PDA-as.

Since we cannot solve the 1-PDA-as directly, we have developed another solution tech-

nique, which we develop in the remainder of the present section. In §5.2.2, we eliminate

the need to explicitly model the guaranteed collection through the concept of “effective

capacity.” In §5.2.3, we demonstrate that if S0 is fixed, the 1-PDA-as can be reformulated

as a constrained Markov decision process (CMDP). In §5.2.4, we define the minimum in-

termediate load (from §4.1.2) in the context of the 1-PDA-as. In §5.2.5, we reformulate

the CMDP from §5.2.3 as a linear program (LP). Thus, it is possible to solve the 1-PDA-as

to optimality by solving a series of LPs (one for each feasible value of S0).

Our solution approach is novel. Each of the steps we apply to solve the 1-PDA-as

is well-known; for example, the technique of reformulating a MDP as a LP was first

described by d’Epenoux in 1960 [17]. However, the combination of these techniques is, as

far as we are aware, unique in the operations research literature.

5.2.1. Inapplicability of dynamic programming and similar methods

Unlike the 1-PDA-as, the 1-PDA can be solved to optimality analytically because the

lack of the sustaining allocation constraint allows the model to consider only the extreme

values of supp(Di) (see §4.1). A similar problem in the literature, the SRA-e (see §2.3),

can be solved to optimality using dynamic programming (DP) [37]. However, DP cannot

be applied to the 1-PDA-as because it is not possible to define states appropriately.
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One option is to define the state space at a segment as the set of random variables

that can represent the quantity of food in the vehicle. Therefore, the set of terminal states

would be all possible values of SDn , which is the set of all discrete random variables with

support lying in {0, 1, . . . , Q}. This set is uncountably infinite. Furthermore, the action

space of this conceptualization of the problem would consist of all feasible randomized

allocation policies, another uncountably infinite set. Such a problem is intractable for DP.

Another option is to define the set of states at a segment as all possible vehicle loads.

However, this conceptualization is also not amenable to DP because the constraints regard-

ing the sustaining allocation are global constraints whose satisfaction cannot be ensured

through recursion. For this conceptualization of the problem, the actions are the possible

random allocations from a given supply quantity; that is, if the vehicle contains s units

of food upon arrival to Agency i, the feasible actions are all discrete random variables

with support lying in
{
amin
i , . . . ,min{s, amax

i }
}

. The actions taken at each s ∈ supp(SAi )

comprise the allocation policy Ai(·) for Segment i. However, whether the allocation policy

satisfies the requirement to allocate at least asusti to Agency i with probability αi depends

on the probability of each possible supply value s. That is, determining whether the al-

location policy Ai(·) is feasible requires calculating the long-run allocation Ai, for which

we must know Pr{SAi = s} ∀s ∈ supp(SAi ). We cannot determine those probabilities

without knowledge of the initial load and the actions at all prior segments, rendering the

application of DP solution techniques impossible.

Several methods have been developed to solve stochastic programs and chance-constrained

programs (CCP) with discrete random variables, but none we found can be applied to
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the 1-PDA-as. For example, Sample Average Approximation (SAA) consists of choos-

ing realizations of the random variables in a problem, then finding values of the decision

variables for which the chance constraints hold for sufficiently many of the realizations

[54]. However, the applications of SAA to stochastic programming are generally limited

to one-stage [49] or two-stage stochastic programs [2, 66]; since uncertainty is revealed

at each segment in the 1-PDA-as, it is a multistage stochastic program. There are CCP

solution approaches that rely on mixed integer linear program formulations, in which each

possible outcome of the random vector is represented by a binary variable [39, 67], but

they cannot be applied to the 1-PDA-as for the same reason. Although Shapiro is able

obtain solutions to a multistage stochastic program through SAA [57], that approach

(which is similar to DP) cannot be applied to the 1-PDA-as because it does not permit

chance constraints nor the use of random variables as decision variables.

5.2.2. Effective capacity

The Maximum Acceptance Policy determines the amount of food collected at donors

in the 1-PDA-as; however, due to the guaranteed collection ci, its application is not as

straightforward as for the 1-PDA. In some cases, less than the entire donation is collected

so that capacity is available for the guaranteed collection of later donors.

In such cases, the Maximum Acceptance Policy still determines the amount of food

collected, but with respect to a value less than the vehicle capacity. We term that value

the “effective capacity.”
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Definition 5.2.1. The effective capacity at Segment i, denoted qi, is the maximum

load upon departure from Donor i. It is defined recursively:

qn = Q (5.2a)

qi = min {qi+1 − ci+1 + amax
i , Q} (5.2b)

At Segment n, the effective capacity is the vehicle capacity; there are no later donors,

so there are no later guaranteed collection values to consider. At prior segments, the

effective capacity is determined by the effective capacity and guaranteed collection of

the next segment and the maximum allocation of the current segment. The guaranteed

collection in the next segment reduces the effective capacity in the current segment because

it represents capacity that must be reserved to collect the donation at the next donor.

The maximum allocation of the current segment increases the effective capacity of the

current segment because it represents capacity that can be freed through allocation.

5.2.3. Constrained Markov decision process

If the initial load S0 is fixed, the 1-PDA-as can be reformulated as a constrained Markov

decision process (CMDP).

The state space of the CMDP in Segment i is the set of possible load values upon

reaching Agency i:

Si = {0, . . . , qi} (5.3)

Using the notation of Formulation (5.1), Si = supp(SAi ).
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The action set Ai(s) from state s in Segment i consists of the possible allocations:

Ai(s) = {amin
i , ...,min{s, amax

i }}

Using the notation of Formulation (5.1), Ai(s) = supp(Ai(s)).

We define the initial state of the CMDP through the use of a Segment “0” that

represents the load before visiting any donors or agencies (that is, the initial load). The

state space of Segment 0 consists of only the initial load:

Pr{S0 = S0} = 1 (5.4)

We must also define an action space for Segment 0. The sole action available is to allocate

0 units of food, since allocation only occurs at agencies, and Segment 0 does not contain

an agency:

A0(S0) = {0} (5.5)

The transition probabilities from state s to state s′ under action (allocation) a are

denoted pi(s
′|s, a). That is, pi(s

′|s, a) = Pr{Si+1 = s′|Si = s, Ai = a}. They are derived

from the donor distributions:

pi(s
′|s, a) = Pr{Di+1 = s′ − s+ a} ∀s′ ∈ {0, . . . , qi+1 − 1} (5.6a)

pi(qi+1|s, a) = Pr{Di+1 ≥ qi+1 − s+ a} (5.6b)

The constraints of the CMDP are those imposed by the requirement to allocate at

least asusti to Agency i with probability αi. This is expressed through Constraints (5.7).

The left side represents the probability that allocations made from the states s ∈ Si
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provide at least the sustaining allocation. For a particular state s, this probability is

Pr{Ai(s) ≥ asusti }; the linear combination on the left side weights that probability by the

probability that Si = s over all possible states.

∑
s∈Si

Pr{Ai(s) ≥ asusti } · Pr{Si = s} ≥ αi ∀i ∈ {1, . . . , n} (5.7)

The reward function of the CMDP, denoted by C, is the collection from the donor. It

is the same for all segments:

C(s, a, s′) = s′ − (s− a) (5.8)

5.2.4. Minimum intermediate load

In the solution method for the 1-PDA described in §4.1.2, the minimum intermediate

load, denoted l∗i plays a crucial role.

Our solution procedure for the 1-PDA-as does not require the calculation of the mini-

mum intermediate load, but the value can be used to reduce the number of variables and

constraints in the LP formulation. Since the LP must be solved many times to obtain

the optimal solution to a single 1-PDA-as instance, any step we take to reduce its size is

worthwhile.

As in our exposition in §4.1.2, we first calculate the supply gap gi:

gi = amin
i − dmin

i (5.9)
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The minimum intermediate load at each segment is calculated recursively:

ln+1 = 0 (5.10a)

li = (li+1 + gi)
+ (5.10b)

Note that we denote the minimum intermediate load without an asterisk; that is,

here we use li, whereas in §4.1.2, we use l∗i . In the context of the 1-PDA, the minimum

intermediate load is a component of the optimal solution; for the 1-PDA-as, the minimum

intermediate load is simply a cut.

5.2.5. Linear program reformulation

The reformulation of a Markov decision process (MDP) as a linear program was first

described by d’Epenoux [17]. The approach was first applied to a CMDP by Derman

[18], who introduced the state-action frequency approach [52]. The LP solution method

for CMDPs has been applied to hospital admission scheduling [35], highway maintenance

[27], building maintenance [64], and the management of spectrum in wireless networks

[71]. Each of these papers starts from a CMDP, which is then expressed as a LP and

solved to obtain an optimal solution to the original problem. Our transformation of a

stochastic program into a set of CMDPs, which are then expressed as LPs and solved in

series to obtain an optimal solution, is unique in the literature.

State-action frequency variables represent the probability of occupying a state (s, i)

and choosing action a. In the context of the 1-PDA-as, each state is an amount of food

in the vehicle upon arrival to a specific agency: state (s, i) represents arriving to Agency

i with load s. The actions are the possible allocations. Choosing action a from state (s, i)
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represents the driver deciding to allocate a units of food from the s units in the vehicle to

Agency i. Therefore, the probability represented by the state-action frequency variable is

that of a joint event, which we denote X i
sa = Pr{SAi = s and Ai(s) = a}.

Since solving an instance of the 1-PDA-as to optimality ultimately requires solving

a series of LPs, any reduction in solution time for the LP is potentially valuable. We

can reduce the size of the LP by eliminating variables which are not used in any feasible

solution. In particular, the state-action frequency variables, X i
sa, are only needed for those

s in the minimal support of SAi .

In general, there is no a priori way to determine supp(SAi ), since SAi an auxiliary

decision variable of the 1-PDA-as. Clearly, supp(SAi ) ⊆ {0, . . . , Q}, but by applying the

concepts developed in §5.2.2 and §5.2.4, we can obtain tighter bounds for the minimum

and maximum values of supp(SAi ):

Lemma 5.2.2. Let SDi and SAi be supersets of supp(SDi ) and supp(SAi ), respectively.

For Donor i, supp(SD1 ) ⊆ SD1 = {S0}. All other SDi and SAi , for i = 1, 2, . . . , n, are

computed recursively:

supp(SAi ) ⊆ SAi =
{

min{sD + d, qi}
∣∣ sD ∈ SDi , d ∈ supp(Di)

}
(5.11a)

supp(SDi+1) ⊆ SDi+1 =
{
sA − a

∣∣ sA ∈ SAi , a ∈ {amin
i , . . . , amax

i }, li+1 ≤ sA − a ≤ qi+1 − ci+1

}
(5.11b)

Equation (5.11a) defines SAi , the superset of supp(SAi ), in terms of SDi , the superset of

supp(SDi ). The elements of SAi are all possible sums of the load upon arrival to Donor i
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(sD ∈ SDi ) and the donation from Donor i (d ∈ supp(Di)), such that the sum not exceed

the effective capacity.

Equation (5.11b) defines SDi+1, the superset of supp(SDi+1), in terms of SAi , the superset

of supp(SAi ). The elements of SDi+1 are all possible differences of the load upon arrival

to Agency i (sA ∈ SAi ) and the allocation to Agency i (a ∈ {amin
i , . . . , amax

i }), such that

this difference is no less than the minimum intermediate load of Segment i + 1 and no

more than the effective capacity at Donor i + 1 less the guaranteed collection at Donor

i + 1 (that is, qi+1 − ci+1), which ensures that the guaranteed collection can be accepted

without exceeding the effective capacity.

In Table 5.3, we summarize the additional notation presented in this section that

appears in the formulation. We include the initial load S0 to emphasize that, for each LP,

its value is fixed.

Table 5.3. Additional parameters and constraints for the LP reformulation
of the 1-PDA-as

Additional Parameters for the LP

SAi a superset of supp(SAi ), a subset of {0, . . . , Q}

S0 the initial load, a fixed non-negative integer

Decision Variables of the LP

X i
sa the probability that SAi = s and Ai(s) = a

Objective (5.12a) of the LP maximizes the expected total collection from all donors.The

form of Objective (5.12a) is a consequence of solving Equation (3.8) for C (the expected

total collection) to obtain C = A + T − S0. The first term computes the total expected

allocation A by calculating the expected allocation at each segment, then summing over
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all segments. The second term computes the expected terminal load T by calculating the

expected value of the difference between the load upon arrival to the final agency and the

allocation to the final agency. The last term, subtracted from the sum of the first two, is

simply the initial load S0.

Constraints (5.12b) and (5.12c) define a network among the X i
sa and ensure that prob-

ability flow is conserved among them. Constraints (5.12b) govern events in which, even

if the entire donation were collected, the load would be less than the effective capacity at

that donor; Constraints (5.12c) govern events in which the load upon departing the donor

is exactly the effective capacity. The left side of each of these constraints calculates the

probability that SAi = s in terms of the X i−1
sa and the possible combinations of donations

d and allocations a′. The right side is the sum of the X i
sa over all possible actions from

state (s, i), which is simply Pr{SAi = s}.

Constraints (5.12d) ensure that each agency receives its sustaining allocation with at

least the required probability. Constraint (5.12e) defines the initial load. Constraints

(5.12f) restrict the X i
sa to [0, 1], since the state-action frequency variables represent prob-

abilities.
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Maximize
n∑
i=1

∑
s∈SAi

min{amax
i ,s}∑

a=amin
i

a ·X i
sa +

∑
s∈SAn

min{amax
n ,s}∑

a=amin
n

(s− a) ·Xn
sa − S0 (5.12a)

subject to

dmax
i∑

d=dmin
i

Pr{Di = d} ·
amax
i−1∑

a′=amin
i−1

X i−1
s−d+a′,a′

 =

amax
i∑

a=amin
i

X i
sa

∀s ∈ SAi \ qi, ∀i = {1, . . . , n}

(5.12b)

dmax
i∑

d=dmin
i

Pr{Di ≥ d} ·
amax
i−1∑

a′=amin
i−1

X i−1
qi−d+a′,a′

 =

amax
i∑

a=amin
i

X i
qia

∀i = {1, . . . , n}

(5.12c)

∑
s∈SAi

∑
a≥asusti

X i
sa ≥ αi

∀i = {1, . . . , n}

(5.12d)

X0
S00

= 1 (5.12e)

X i
sa ∈ [0, 1]

∀a ∈ {amin
i , . . . ,min{amax

i , s}},∀s ∈ SAi ,∀i = {1, . . . , n}
(5.12f)

The only variables of the LP are the X i
sa, of which there is one for each element in

SAi for each segment, as well as the additional variable X0
S00

to represent the initial load.

Therefore, the LP has
∑n

i=1 |SAi | + 1 variables. Since |SAi | ≤ Q + 1, the LP has at most

(Q+ 1)n+ 1 variables.

The LP has
∑n

i=1 |SAi | + 2n + 1 constraints. Each segment has |SAi | of Constraints

(5.12b), for a total of
∑n

i=1 |SAi | constraints conserving probability flow when the donation
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does not exceed the effective capacity. Each segment has one of the Constraints (5.12c),

for a total of n constraints conserving probability flow when the donation does exceed

the effective capacity. Each segment has one of the Constraints (5.12d), for a total of

n constraints regarding the sustaining allocation. The lone Constraint (5.12e) defines

the initial load. The remaining constraints merely describe the range of the X i
sa. Since

|SAi | ≤ Q+ 1, the LP has at most (Q+ 3)n+ 1 constraints.

5.3. One-supersegment routes

In the present section, we narrow our focus to a class of routes with a particular

structure: those that consist of a set of donors followed by a set of agencies. We term this

structure a “supersegment;” therefore, this type of FRP route can equivalently be referred

to as a one-supersegment route. This route structure is a useful object of study because

it is large enough to present complexity in the allocation decision, but small enough to

obtain strong analytical results.

Furthermore, a general FRP route can be conceptualized as a sequence of superseg-

ments. For example, consider the following route, in which donors are represented as D

and agencies as A:

D A D D A A D

The route comprises three supersegments:

D A |D D A A |D

In §5.3.1, we define a myopic allocation policy, Am, for one-supersegment routes. In

§5.3.2, we prove analytical properties of the myopic allocation policy, including conditions
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that guarantee its optimality. In §5.3.3, we employ a procedure based on the myopic

allocation policy Am to adapt the MILB solution procedure from §4.1 as a heuristic

solution method for the 1-PDA-as.

5.3.1. Myopic allocation policy

At Agency i, any amount between amin
i and amax

i may be allocated. However, Constraints

(5.1g) and (5.1h) establish minimum requirements only on allocations of at least amin
i and

asusti , respectively. Therefore, a feasible allocation policy need only dictate the conditions

under which to allocate amin
i and asusti . Likewise, a feasible allocation policy need only

ensure that asusti be allocated with a probability of exactly αi. We term such an allocation

policy, in which constraints regarding allocation are satisfied exactly at their minimum

values, a minimal allocation policy.

There is an obvious incentive to allocate more than the minimum required by con-

straints – namely, to free capacity in order to collect additional donations. We address

this in §5.3.3 through the “discretionary allocation,” but at present, note that applying

a minimal allocation policy does not impact the total collection for a one-supersegment

route, since all donations are collected before any allocations are made.

The load upon arrival to Agency i is an observation s of the random variable SAi .

Intuitively, it is reasonable to allocate more food when the vehicle contains more food.

That is, when s is greater than some value, asusti should be allocated; otherwise, amin
i should

be allocated. If the “cutoff” on s is chosen so that asusti is allocated when the upper αi of

the distribution of SAi is observed, then the constraints on allocation at Agency i are met

exactly. In Definition 5.3.1, we formalize this intuition.
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Definition 5.3.1. Myopic allocation policy Let s1−αi denote the (1− αi) quantile

of SAi ; that is, s1−αi is the greatest s ∈ supp(SAi ) such that Pr{SAi ≥ s} ≥ αi. The myopic

allocation policy at Agency i, denoted Am
i (s), is the allocation at Agency i when s units

of food are available:

Am
i (s) =



asusti s > s1−αi (5.13a)

amini s < s1−αi (5.13b)
asusti w.p.

Pr{SAi >s
1−α
i }−(1−αi)

Pr{SAi =s
1−α
i }

amini w.p.
(1−αi)−Pr{SAi <s

1−α
i }

Pr{SAi =s
1−α
i }

s = s1−αi (5.13c)

Cases (5.13a) and (5.13b), respectively, state that asusti be allocated when the load is

greater than the (1− α) quantile of SAi and that amin
i be allocated when the load is less.

Case (5.13c) addresses the allocation when the load is exactly equal to the 1−αi quantile of

SAi . If amin
i were allocated in this case, the probability of receiving the sustaining allocation

would be less than αi, violating Constraints (5.1h); therefore, the definition establishes a

random allocation under which asusti is allocated with the minimum probability necessary

so that the probability of receiving the sustaining allocation is exactly αi.

5.3.2. Analytical results

By considering the one-supersegment case, we obtain several analytical results about the

1-PDA-as and the myopic allocation policy. Theorem 5.3.2 establishes a relationship

between the initial load and total collection. This result is useful for proving later results,

because, in the context of a proof, it is generally easier to compute the initial load than
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to compute the total collection. The proof of Theorem 5.3.2 and the other theorems in

this subsection are provided in Appendix A.

Theorem 5.3.2. For a one-supersegment route, any solution that minimizes the initial

load S0 is optimal.

Note that minimizing the initial load is more than a mathematical convenience. Food

that remains in the food bank warehouse is available to agencies that own or lease vehicles.

Therefore, reducing the initial load required for FRP has intrinsic value in food bank

operations.

The intuitive appeal of the myopic allocation policy is borne out by our analytical

results regarding simple route structures.

Theorem 5.3.3. For a one-supersegment route with a single agency, the myopic al-

location policy Am is optimal.

The proof of Theorem 5.3.3 demonstrates optimality by showing that the initial load

obtained by applying the myopic allocation policy, Sm0 , is the minimum feasible initial

load. There may exist other allocation policies with initial load Sm0 , which, by Theorem

5.3.2, are also optimal solutions. Corollary 5.3.4 states conditions under which the myopic

allocation policy is the unique optimal minimal allocation policy.

Corollary 5.3.4. For a one-supersegment route with a single agency, if Pr{SAn ≥

s1−αn } = αn and s1−αn = asustn , then the myopic allocation policy Am is the unique optimal

minimal allocation policy.
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With Theorem 5.3.5, we generalize Theorem 5.3.3 to a one-supersegment route with

any number of agencies, if a condition on the order of the agencies and the differences

between their sustaining and minimum allocations is satisfied. In essence, this condi-

tion states that the allocation decision at each agency is of greater magnitude than all

subsequent allocation decisions combined.

Theorem 5.3.5. If (asustk −amin
k ) ≥

∑n
i=k+1(a

sust
i −amin

i ) for all k ∈ {|D|, . . . , n}, then

the myopic allocation policy Am is optimal.

When determining the allocation policy within a supersegment, the order of the agen-

cies is mutable. In reality, the FRP vehicle must visit the agencies in the order stipulated,

but no additional information is obtained as the agencies are visited; therefore, the allo-

cation decision for each agency can be made before visiting any. That is, after collecting

the final donation, the agencies can be “sorted” by decreasing (asusti − amin
i ) to determine

the allocation at each agency, even though the agencies are not visited in that order. If,

after “sorting,” the decreasing differences condition of Theorem 5.3.5 is satisfied, then the

myopic allocation policy is optimal. A one-supersegment route with only two agencies

must satisfy this condition when sorted, so the myopic allocation policy is always optimal

in that case:

Corollary 5.3.6. For a one-supersegment route with two agencies, if “sorting” is

applied, then the myopic allocation policy Am is optimal.
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5.3.3. Heuristic adaptation of MILB algorithm

In §4.1.2, we presented the Minimum Intermediate Load-Based (MILB) algorithm to

solve the 1-PDA to optimality. Here, we adapt that algorithm to develop a heuristic

procedure for the 1-PDA-as. Instead of the MILB allocation policy Al?

i , we apply the

myopic allocation policy Am; therefore, we refer to the heuristic as the Myopic MILB or

“MMILB” procedure.

The MMILB procedure has essentially the same steps as the MILB algorithm, but

applied to supersegments (indexed by j ∈ {1, . . . , ñ}) instead of segments. Each super-

segment is treated as an independent one-supersegment route. They are first solved from

the end of the route to the beginning (to obtain minimum intermediate loads and the

initial load), then from the beginning to the end (to obtain the allocation policy, and

hence the 1-PDA-as solution).

Step 1: Calculate minimum intermediate loads and obtain initial load. As for

the MILB algorithm, we obtain the MMILB minimum intermediate loads l̃j recursively,

starting with l̃ñ+1 = 0. The minimum intermediate load at the final supersegment, l̃ñ, is

the minimum feasible initial load for the last supersegment considered as an independent

route with the myopic allocation policy Am applied. For supersegments prior to the final

one, the minimum intermediate load is computed in the same way (as the minimum fea-

sible initial load of the supersegment as an independent route), except that Am is applied

to the total donations less the minimum intermediate load of the next supersegment.

Step 2: Define allocation policy. The myopic allocation policy is a minimal allocation

policy: it allocates no more than the amount needed to exactly satisfy the constraints

regarding allocation. However, the objective of the 1-PDA-as is to maximize collection,
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which is aided by freeing vehicle capacity. From the perspective of the model, there is

no incentive to keep excess food in the vehicle. Furthermore, in consideration of the

motivating context of the problem, one of GCFD’s primary motivations for including

agencies on FRP routes is the opportunity to deliver perishable food to them quickly.

Therefore, the MMILB allocation policy has two components: the myopic allocation

policy Am and the discretionary allocation. The discretionary allocation is the difference

between the supply (less the MMILB minimum intermediate load of the next superseg-

ment) and Am. As noted in §5.3.2, the allocation decision is made for all agencies in the

supersegment simultaneously, so this difference is known before visiting the first agency.

Deliberately, we provide no guidance regarding how the discretionary allocation should

be distributed among the agencies (except, of course, that the allocation at an agency not

exceed its maximum allocation). The decision is left to the FRP driver’s discretion. The

heuristic includes this design choice as a recognition of the shortcomings of the 1-PDA-as

and, indeed, of any model. For example, we have assumed that food is a homogeneous

commodity, but clearly it is not; certain agencies may be better able to make use of

certain types of food, due to characteristics of the community they serve or the types

of programs they administer. This information is available to the FRP driver, as well

as other information about the agencies’ operations. The digital rhetorician James J.

Brown, Jr. observes that computational procedures often lack “the flexibility required for

the ethical predicaments of hospitality” [11], and that this undermines their effectiveness

and makes human users less likely to apply them; allowing the FRP driver to distribute

the discretionary allocation introduces needed flexibility to our 1-PDA-as solution.



www.manaraa.com

97

Step 3: Apply Am to determine feasibility and evaluate objective. For the 1-

PDA, vehicle capacity is a decision variable, so the existence of a feasible solution is

guaranteed. This is not the case for the 1-PDA-as; hence, this step of the MMILB

procedure is slightly different from that of the MILB algorithm.

The initial load S0 is simply the minimum intermediate load of the first supersegment,

l̃1. By applying the MMILB allocation policy (which consists of the myopic allocation

policy Am and the discretionary allocation) iteratively to each supersegment, we deter-

mine whether it provides a feasible solution and, if so, we calculate the expected total

allocation.

5.4. Computational results

In §5.4.1, we describe the experimental design used to study the properties of the

1-PDA-as. In §5.4.2, we summarize insights obtained from analysis of optimal solutions

to the problem. In §5.4.3, we evaluate solutions obtained with the MMILB heuristic

procedure.

5.4.1. Experiment design

Although operations at GCFD motivate our formulation of the 1-PDA-as, we do not have

data from GCFD for our computational study. Therefore, we use the NIFB data described

in §4.4, with some adaptations.

Vehicle. For all instances, we use a vehicle capacity of Q = 200, the approximate capacity

in boxes of the refrigerated straight trucks used for FRP by GCFD.
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Donors. For the 1-PDA, only the minimum and maximum donation amounts dmin and

dmax are relevant. The 1-PDA-as requires the full distribution D. However, the state-

action frequency variables of Formulation (5.12) are products of probabilities, which poses

a challenge due to the arithmetic precision of CPLEX (or any other solver). The minimum

precision available in CPLEX is 1e−9; therefore, to include routes that contain up to 9

consecutive agencies, the least probable donation amount must have a probability of at

least 0.1. In consideration of this issue, we obtain distributions from the NIFB data with

a specific structure. The distribution is defined in terms of the minimum, first quartile,

median, third quartile, and maximum of the observed data:

D =



dmin w.p. 0.1

Q1 w.p. 0.25

Q2 w.p. 0.35

Q3 w.p. 0.25

dmax w.p. 0.1

(5.14)

Several values are used for the guaranteed collection c through the experiment design, as

described below.

Agencies. For the 1-PDA, only the minimum and maximum allocation amounts amin

and amax are relevant. The 1-PDA-as requires a third value, the sustaining allocation,

which we compute as the ceiling (to obtain an integer) of the mean of the minimum and

maximum allocations:

asust =

⌈
amin + amax

2

⌉
(5.15)
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Several values are used for α, the minimum probability of receiving the sustaining alloca-

tion, through the experiment design, as described below.

Routes. The experiment consists of a large set of randomly generated FRP routes. First,

we generate one hundred random sets of nodes for each problem size from 6 to 15 nodes,

for a total of one thousand node sets. Then, from each node set, we generate twenty

random routes (with the restriction that the first node be a donor). Then, from each

route, we obtain instances based on different levels of the donor and agency parameters,

denoted “Low,” “Moderate,” and “High.”

The donor levels are based on the guaranteed collection value, with a higher level

corresponding to a donor whose entire donation is collected more frequently:

Donor Low: c = Q1

Donor Moderate: c = Q2

Donor High: c = Q3

The agency levels are based on the probability of receiving the sustaining allocation,

with a higher level corresponding to an agency that receives its sustaining allocation more

frequently:

Agency Low: α = 0.6

Agency Moderate: α = 0.9

Agency High: α = 1

For the Agency High level, note that α = 1 implies that amin = asust.

There are nine combinations of the donor and agency levels for each route; therefore,

the experiment consists of 180, 000 instances. Routes of 6 to 10 nodes were solved to

optimality. All instances were solved heuristically with the MMILB procedure. The
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experiment was run on a Windows 7 Pro virtual machine with 32 GB of RAM using

CPLEX 12.5.1.

5.4.2. Analysis of optimal solutions

Of the 90, 000 instances with 6 to 10 nodes, 94% are feasible. As the number of nodes

increases, the fraction of feasible instances decreases, which is unsurprising since the

vehicle capacity does not change. Likewise, the average solution time increases as the

number of nodes (an approximation of the problem size) increases. These relationships

are apparent in Table 5.4. Although the optimal solution procedure requires solving a

series of LPs, each LP takes a relatively short time to solve (likely in part due to the

simple form of the donor distributions chosen due to issues of numerical precision), so the

average solution time is low.

Number of nodes Feasible instances Average solution time

6 98.7% 0.54
7 97.8% 1.21
8 91.8% 3.01
9 94.4% 5.12
10 86.5% 10.62

Table 5.4. Fraction of instances feasible and average CPLEX solution time
(in CPU seconds) for instances solved to optimality

Donor and agency levels. Each route in the experiment is run nine times, once for each

combination of the donor and agency levels described in §5.4.1. Of these combinations,

Donor Low with Agency Low is the least restrictive (i.e., the instance with the largest

feasible region), while Donor High with Agency High is the most restrictive. Thus, as the
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level increases from Low to Moderate to High for either donors or agencies, the fraction

of instances that are feasible cannot increase.

The impact of donor and agency levels on feasibility is summarized in Table 5.5.

Increasing the agency level has little impact on feasibility; in fact, only the change from

Agency Moderate to Agency High, which eliminates the distinction between the minimum

and sustaining allocations, registers a decrease of more than 1% in the fraction of instances

feasible, and even then only for some donor levels. In contrast, increasing the donor level

has a pronounced impact on feasibility. Although a high guaranteed collection provides

better service to a donor, reserving excessive capacity for collections makes it impossible

to adequately serve agencies when donations are low, substantially decreasing the fraction

of instances feasible.

Agency Low Agency Moderate Agency High

Donor Low 100% 100% 100%
Donor Moderate 97% 97% 96%
Donor High 86% 86% 84%

Table 5.5. Fraction of instances feasible, by combinations of donor and
agency levels

Since it restricts the feasible region, increasing the donor or agency level can also

impact the objective. There are 8, 340 routes that are feasible for all combinations of the

donor and agency levels. (That is, 84% of the 10, 000 routes, corresponding to those that

are feasible for the combination of Donor High and Agency High.) In Tables 5.6 and 5.7,

we compare the objective value for each combination of levels with the objective value for

the least restrictive combination, Donor Low and Agency Low.
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Table 5.6 indicates the fraction of routes for which the objective value is less than

that for Donor Low and Agency Low. As observed above for fraction of instances feasible,

the difference between Agency Low and Agency Moderate is negligible. However, the

difference of Agency High is more marked, likely because the lack of flexibility at agencies

requires an increase in the initial load. The impact of donor levels is similar to that

observed for fraction of instances feasible.

Agency Low Agency Moderate Agency High

Donor Low 0% 1% 11%
Donor Moderate 7% 7% 15%
Donor High 11% 12% 18%

Table 5.6. Fraction of instances for which the objective value is less than
that for Donor Low and Agency Low

Although a substantial fraction of routes have a lower objective value for the more

restrictive donor and agency levels, the difference is slight. In Table 5.7, we report the

maximum gap from the objective for Donor Low and Agency Low. The maxima are

very low; in fact, the average gap for every combination of levels is 0%. More stringent

requirements at donors and agencies reduce the capacity available to collect donations

(either because that capacity is reserved for later donors or is occupied by an increased

initial load), but the impact on the objective value is limited because the objective function

is an expectation, and it is improbable that the additional capacity available in the least

restrictive case is utilized.

Route structure. As described in §5.4.1, twenty routes are generated for each node set.

We compare the solutions for these twenty routes to obtain insights about the impact of

node sequencing on the 1-PDA-as. (Clearly, more than twenty sequences are possible for
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Agency Low Agency Moderate Agency High

Donor Low 0% 0% 1%
Donor Moderate 0% 0% 1%
Donor High 2% 2% 2%

Table 5.7. Maximum gap in objective value compared to that for Donor
Low and Agency Low

a set of 6 to 10 nodes; the twenty-route sample is a limitation of our experiment.) To

isolate our attention to the impact of node sequencing, we only consider instances with

the levels Donor Low and Agency Low.

Number of nodes Gap exists Average gap

6 17% 0.2%
7 19% 0.2%
8 43% 0.9%
9 43% 0.9%
10 57% 2.5%

Table 5.8. Gaps in objective value between the best and worst routes for
each node set, for instances with the levels Donor Low and Agency Low

In Table 5.8, for each node set, we compare the route with the highest objective

value with the rest of the routes. As the number of nodes increases, the impact of node

sequencing increases. For only 6 or 7 nodes, all twenty routes have the same objective

value in more than 80% of node sets, but for 10 nodes, fewer than half of node sets have

the same property. The average gap between the best and worst routes also increases as

the number of nodes increases.

To interpret these relationships, it is important to recall that the vehicle capacity is

the same for all instances. Therefore, as the number of nodes increases, it is more likely
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that donations exceed capacity, and therefore that donors and agencies should be ordered

judiciously to free capacity.

Number of nodes Gap exists Average gap

6 8% 0.0%
7 13% 0.0%
8 35% 0.3%
9 24% 0.4%
10 48% 0.8%

Table 5.9. Gaps in objective value between the best and worst routes for
each node set, for instances with the levels Donor Low and Agency Low;

only includes routes that end in a donor

Upon examination of particular instances, it is apparent that the best routes had

agencies dispersed throughout the route. In most cases, the worst sequence for a node

set ended with one or several agencies. A primary motivation for including agencies on

FRP routes is to free capacity to accept more donations, but an agency at the end of the

route does not fulfill this purpose. (The same is true of an agency at the beginning of the

route, but by design, no such routes were generated.) The importance of agency position

is reflected in Table 5.9, which compares the best and worst routes for each node set, but

only among routes that end with a donor. Compared to Table 5.8, gaps between the best

and worst routes occur less often, and the average gap in objective value is substantially

less.

5.4.3. Performance of MMILB procedure

We test two implementations of the MMILB procedure. As noted in §5.3.2, the agencies

in a supersegment can be “sorted” by decreasing value of asusti − amin
i before applying the
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myopic procedure. (This “sorting” does not correspond to a change in the FRP route,

but merely a change in the order in which allocation decisions are made, since all the

information pertinent to allocation is available before the first agency in the supersegment

is visited.) Therefore, for each instance, we apply the myopic procedure to the given

node sequence (denoted “myopic”) and to the node sequence with the agencies sorted by

decreasing asusti − amin
i in each supersegment (denoted “sorted myopic”).

In Table 5.10, we summarize the performance of each implementation of the MMILB

procedure by the number of nodes in the route. As expected for a heuristic, the solution

time is faster than the optimal procedure (see Table 5.4). However, our primary motiva-

tion for developing a heuristic is not the solution time required for an optimal solution

(which is modest), but the limitation on the instances that can be solved with the optimal

procedure due to issues of numerical precision. Unlike the optimal procedure, the MMILB

procedure can be applied to routes of any length, without restrictions on the form of the

Di.

Solution time
Number of nodes Myopic Sorted myopic

6 0.04 0.03
7 0.04 0.04
8 0.05 0.05
9 0.05 0.05
10 0.06 0.06
11 0.06 0.07
12 0.07 0.08
13 0.07 0.08
14 0.09 0.11
15 0.09 0.09

Table 5.10. Average solution time for implementations of the MMILB
procedure, in seconds
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Myopic Sorted myopic

Number of nodes Average gap Maximum gap Average gap Maximum gap

6 0.0% 1.3% 0.0% 1.3%
7 0.0% 2.9% 0.0% 2.9%
8 0.0% 6.1% 0.0% 6.1%
9 0.0% 8.1% 0.0% 8.1%
10 0.0% 11.4% 0.0% 11.4%

Table 5.11. Average and maximum optimality gaps for implementations of
the MMILB procedure

The two implementations of the MMILB procedure have nearly identical performance

in terms of optimality gaps, as summarized in Table 5.11. The sorted myopic implemen-

tation has a slight advantage in the rate at which a gap exists. In Tables 5.12 and 5.13,

respectively, we summarize the fraction of instances for which each implementation of the

MMILB procedure has a gap, by donor and agency level. (These statistics are restricted

to routes for which every combination of the levels is feasible.) For several combinations

of donor and agency level, the sorted myopic implementation exhibits an optimality gap

at a slightly lower rate than the myopic implementation.

Tables 5.12 and 5.13 reveal a pattern in the instances for which the MMILB solution (of

either implementation) has an optimality gap: gaps are more common for instances with

the Agency Moderate level. In terms of the feasibility of the instance (see Table 5.5) and

the impact on the objective (see Tables 5.6 and 5.7), Agency Moderate is indistinguishable

from Agency Low; here, in contrast, the impact of the difference is stark. This occurs

because the other agency levels are relatively simple from the perspective of the heuristic:

for Agency Low, since the sustaining allocation is very low, an initial load is probably

not needed; for Agency High, the minimum and sustaining allocation are the same, so no



www.manaraa.com

107

allocation decision need be made. For Agency Moderate, the allocation decision is the

most challenging, so MMILB obtains an optimal solution less frequently (although the

solutions it finds are still quite good; the average optimality gap for such instances is 0%).

Agency Low Agency Moderate Agency High

Donor Low 0.09% 4.45% 0.00%
Donor Moderate 0.09% 4.50% 0.00%
Donor High 0.11% 4.83% 0.00%

Table 5.12. Fraction of instances for which the myopic implementation of
the MMILB procedure exhibits an optimality gap

Agency Low Agency Moderate Agency High

Donor Low 0.07% 4.44% 0.00%
Donor Moderate 0.07% 4.48% 0.00%
Donor High 0.08% 4.79% 0.00%

Table 5.13. Fraction of instances for which the sorted myopic
implementation of the MMILB procedure exhibits an optimality gap

In Table 5.14, we report the average gap between the minimum initial load associated

with the optimal solution and the initial load mandated by each implementation of the

MMILB procedure. The sorted myopic implementation has a clear advantage over the

myopic implementation in terms of initial load. This is a consequence of Theorem 5.3.5;

the proof of that result demonstrates conditions under which ordering agencies by the

metric used for sorting minimizes the initial load for a one-supersegment route. Although

minimizing the initial load is not the objective of the 1-PDA-as, it is advantageous for the

food bank to keep food in the warehouse for other means of distribution, so the sorted

myopic solution is preferable.
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Initial load gap
Number of nodes Myopic Sorted myopic

6 3.2 3.0
7 4.8 4.5
8 3.9 3.7
9 4.9 4.5
10 4.3 4.0

Table 5.14. Average gap in initial load for implementations of the MMILB
procedure
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CHAPTER 6

Conclusion

Too many food bankers get hung up on trucks, docks, and warehouses, and

they forget that their real goal is to get families on their feet.

Willy Elliot-McCrea

Executive Director, Second Harvest Food Bank of Santa Cruz County

In this work, we studied two models of FRP operations: the selective 1-PDTSP with

stochastic supply and the 1-PDA-as. We demonstrated that the inclusion of agencies on

FRP routes can be beneficial to the food bank, donors, and agencies. This is achieved by

structuring routes and allocation decisions so that agencies can be used to mitigate the

challenges posed by randomness in donations, permitting vehicle capacity to be freed and

reused. Several opportunities exist to enhance the models we have formulated.

The selective 1-PDTSP with stochastic supply would be more useful if it could be

applied to multiple vehicles, i.e., if it were a generalization of the 1-PDVRP. In practice,

several vehicles are used each day to collect donations in each NIFB region, and each

agency can be assigned to only FRP route, so a model that considers only one vehicle

at a time is of limited value. Additional research should also be done regarding heuristic

approaches for solving the selective 1-PDTSP with stochastic supply. Although CRIH

applied to heuristic routes of donors works well in the context of NIFB, its success relies

heavily on the ZMIL condition being approximately fulfilled. In another context (for

example, a food bank with a high minimum allocation at every agency), most FRP routes
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could have nonzero initial and intermediate loads, causing the simple R̃i used by CRIH

to be a poor estimate of capacity reuse.

An unfortunate aspect of the 1-PDA-as is that, due to issues of numerical precision,

it can only be solved to optimality for a restricted class of instances. The MMILB heuris-

tic performs well, but more research is warranted to find a different solution technique

that guarantees optimality without modeling joint probabilities as decision variables, the

underlying cause of the issues of numerical precision. Furthermore, the 1-PDA-as is a

generalization of a part of the selective 1-PDTSP with stochastic supply, so it would be

useful to add the other components of that problem (node sequencing and routing), and

ideally to consider multiple vehicles as well. At present, since it can only be applied to a

single route, the 1-PDA-as is not useful when total donations on a route are less than the

vehicle capacity; in that case, there is no reason to consider including agencies. However,

a multiple-vehicle analogue of the 1-PDA-as could combine existing FRP routes, utilizing

agency inclusion to ensure that the routes produced satisfy the capacity constraint.

The eventual goal of this line of research would be an integrated model considering

all of the food collection and distribution tasks of the food bank. The vehicles used for

FRP routes are also those that make scheduled deliveries at agencies; that collect large

donations from food manufacturers and wholesalers; and that support “mobile pantries,”

events in which food is distributed from a truck directly to people (generally in an area

that is not served by a food pantry). Including all of these decisions in the same model

would allow for extremely efficient solutions that combine multiple tasks, such as an FRP

route that begins after a scheduled delivery to a distant agency. Such a model could also
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include the option for some agencies to directly collect FRP donations from donors, a

recent innovation at NIFB.

Although the selective 1-PDTSP with stochastic supply and the 1-PDA-as appar-

ently consider only the logistics of collecting and distributing donated food, the potential

contribution of Operations Research to the campaign against hunger is more profound.

Recently, a growing chorus of anti-hunger advocates have criticized the emphasis that

Feeding America and its member food banks place on growth, particularly as measured

by pounds of food distributed and number of people served. They argue that food banks

perpetuate their own expansion by creating a co-dependent relationship among the food

bank and food recipients, in which increasing the supply of food only increases demand.

They also criticize the poor nutritional quality of much food distributed by food banks,

the lack of diversity in food bank leadership, and that food banks in general manage

hunger as a symptom rather than attempting to reduce poverty [23, 68].

Feeding America and its member food banks have responded to these critiques. For

example, food banks are working to improve food quality by increasing the quantity of

produce they distribute [20], and Feeding America has recently created a senior level po-

sition tasked with “ending hunger” [23]. A few food banks have innovative programs that

directly address the root causes of poverty, such as the community food security programs

at Oregon Food Bank, the community-supported agriculture (CSA) programs supported

by the Capital Area Food Bank and the Western Massachusetts Food Bank, and the use

of warehouse space to catalyze a new catering business at Foodlink (in Rochester, New

York) [23], but the ability of food banks in general to emulate these programs or try other

ideas is hampered by the effort required to manage the logistics of their operations. The
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core work of food banks remains the collection and distribution of food, and as sociologist

Janet Poppendieck points out, “because food programs are logistically demanding, their

maintenance absorbs the attention and energy of many of the people most concerned

about the poor, distracting them from the larger issues of distributional politics” [51].

Operations Research is the tool that food bank leadership lacks. Through partnership

with OR experts, food banks can reduce the effort required to address their current logis-

tics challenges and utilize their existing resources more efficiently to support innovative

programs that address the root causes of poverty. The extensive recent OR research in

charitable food collection and distribution outlined in §2.1, including this work, are early

steps in what will hopefully become an extensive and mutually beneficial collaboration

between food banks and the OR community.
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pickup-and-delivery traveling salesman problem. Transportation Science, 38(2):245–

255, 2004.

[33] L.M. Hvattum and A. Løkketangen. Using scenario trees and progressive hedging for

stochastic inventory routing problems. Journal of Heuristics, 15(6):527–557, 2009.

[34] A.J. Kleywegt, V.S. Nori, and M.W.P. Savelsbergh. The stochastic inventory routing

problem with direct deliveries. Transportation Science, 36(1):94, 2002.

[35] P. Kolesar. A Markovian model for hospital admission scheduling. Management

Science, pages 384–396, 1970.

[36] G. Laporte and S. Martello. The selective travelling salesman problem. Discrete

Applied Mathematics, 26(2):193–207, 1990.

[37] R. Lien, S. Iravani, and K. Smilowitz. Sequential resource allocation for nonprofit

operations. Operations Research, 62(2), 2014.
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Master’s thesis, Instituto de Computaçao, Universidade Federal Fluminense, Niterói,
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APPENDIX A

Proofs

Lemma 4.1.3: Given a scenario (d1, d2, . . . , dn) and initial load S0, no allocation

policy allocates more in total than the MILB allocation policy Al
i(·) ∀ i ∈ {1, . . . , n}.

Proof. We first note that for a given load s at Agency i, no allocation policy could

allocate more than the MILB allocation policy. This is a direct consequence of the struc-

ture of the MILB allocation policy, Equation (4.4): If Al∗
i (s) = s − l∗i+1, allocating more

would cause the intermediate load upon arrival to the next segment to be less than the

minimum intermediate load; if Al∗
i (s) = amax

i , allocating more would violate the maximum

allocation constraint at Agency i.

Since SDi and SAi are random variables, they are minimized in the sense of stochastic

dominance. That is, for any scenario (d1, d2, . . . , dn), the realizations of SDi and SAi are

stochastically dominated by the realizations resulting from the application of any other

allocation policy; therefore, the SDi and SAi resulting from the application of the MILB

allocation policy are stochastically dominated by those resulting from the application of

any other allocation policy.

For any allocation policy, the relationship between SAi and SDi+1 from (4.1c) is given

by:

SDi+1 = SAi − Ai
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We solve the equation for the long-run allocation at Agency i:

Ai = SAi − SDi+1

This relationship also holds in aggregate for the entire route:

n∑
i=1

Ai =
n∑
i=1

(
SAi − SDi+1

)
=

n∑
i=1

SAi −
n∑
i=1

SDi+1

As a consequence of the above, the quantity
∑n

i=1 SDi+1 is minimized by the application

of the MILB allocation policy. An allocation policy could only allocate more than the

MILB allocation policy by increasing at least one of the SAi ; but doing so would require

increasing SDi by the same amount, leaving the value of
∑n

i=1 SAi −
∑n

i=1 SDi+1 unchanged.

Therefore, no allocation policy can allocate more than the MILB allocation policy.

�

Theorem 4.1.4: The MILB solution (consisting of initial load Sl
∗
0 , allocation policy

Al∗
i (·) ∀ i ∈ {1, . . . , n}, and capacity Ql∗) is an optimal solution to the 1-PDA.

Proof. We prove the claim by demonstrating that the MILB maximum intermediate

load ul
∗
i is a feasible lower bound on max supp(SAi ) at each segment. By Constraints (4.1f),

since SAi = SDi +Di, the SAi determine the capacity, so demonstrating this statement about

the ul
∗
i proves the claim. We proceed by induction.

Initial step at Segment 1: For the first segment, ul
∗
1 = Sl

∗
0 = l∗1, which is the

minimum feasible value of SA1 since it is the minimum intermediate load for the first

segment.
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Induction hypothesis for Segment j − 1: We assume that ul
∗
j−1 is a feasible lower

bound on max supp(SAj−1).

Demonstration of claim for Segment j: We show that ul
∗
j is a feasible lower

bound on max supp(SAj ).

We calculate ul
∗
j by applying Equation (4.5):

ul
∗

j = max
{
l∗j , u

l∗

j−1 + dmax
j−1 − amax

j−1
}

Since none of the other values in the expression are decision variables, ul
∗
j is a feasible lower

bound on max supp(SAj ) if ul
∗
j−1 is minimized. Due to the induction hypothesis, we know

that ul
∗
j−1 is a feasible lower bound on max supp(SAj−1), and hence that it is minimized, so

ul
∗
j is minimized. Therefore, the MILB solution minimizes max supp(SAj ) at Segment j.

By induction, this applies to all segments; therefore, since Q ≥ maxi max supp(SAi ), the

MILB solution obtains the minimum capacity.

�

Theorem 4.2.1: Given a solution to the implicit 1-PDA, the allocation policy:

Al
i(s) = min{s− li+1, a

max
i } ∀ s ∈ supp(SAi ), ∀ i ∈ {1, . . . , n}

is feasible.

Proof. We prove the claim by demonstrating that Al
i(·) satisfies Constraints (4.1d)

and (4.1e) of the 1-PDA.
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Constraints (4.1d) require that Al
i(s) ≤ s. By Equation (4.8), Al

i(s) ≤ s − li+1 ≤ s,

satisfying the constraint.

Constraints (4.1e) require that Al
i(·) allocate at least the minimum allocation and no

more than the maximum allocation at each segment.

Regarding the minimum allocation: Al
i(·) allocates either amax

i or s − li+1. If amax
i is

allocated, then clearly at least the minimum allocation is provided. If s− li+1 is allocated,

then applying Constraints (4.7c):

s− li+1 ≥ li + dmin
i − li+1 > li+1 − dmin

i + amin
i + dmin

i − li+1 = amin
i (A.1)

The restriction regarding the maximum allocation is satisfied since one of the terms

of the minimization in Equation (4.8) is amax
i .

�

Theorem 4.2.2: Inserting an agency on an edge adjacent to the depot cannot decrease

the minimum capacity.

Proof. Since we know that it produces an optimal solution (Theorem 4.1.4), we apply

the MILB algorithm.

Restating Equation (4.6), the minimum required capacity for a route is given by:

Ql∗ = max
{
ul
∗

1 + dmax
1 , ul

∗

2 + dmax
2 , . . . , ul

∗

n + dmax
n

}
(A.2)

Consider the insertion of an agency at the beginning of the route. We refer to the

agency considered for insertion as “Agency 0” with minimum allocation amin
0 > 0. Recall
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that ul
∗
1 = Sl

∗
0 . For the route without the insertion of Agency 0, Sl

∗
0 = l∗1. If Agency

0 were inserted before Donor 1, the minimum allocation at Agency 0 would have to be

provided from the initial load; that is, Sl
∗
0 = l∗1 + amin

0 . This would increase ul
∗
1 , in turn

increasing the first term of Equation (A.2), which can only increase Ql∗ .

Consider the insertion of an agency at the end of the route. We refer to the agency

considered for insertion as “Agency (n + 1)” with minimum allocation amin
n+1 > 0. Recall

that ul
∗
n = max

{
l∗n, u

l∗
n−1 + dmax

n−1 − amax
n−1
}

. For the route without the insertion of Agency

(n+1), l∗n =
(
amin
n − dmin

n

)+
. If Agency (n+1) were inserted after Agency n, the minimum

allocation at Agency (n+1) would have to be ensured by the minimum intermediate load

at the prior segment; that is, l∗n =
(
amin
n+1 + amin

n − dmin
n

)+
. This can only increase ul

∗
n , in

turn increasing the last term of Equation (A.2), which can only increase Ql∗ .

�

Theorem 4.2.3: For any route of the set of donors D and the set of agencies A, a

bound on the minimum required capacity is:

Q∗ ≥
∑
D∈D

dmax
D −

∑
A∈A

amax
A

Proof. We use Qlb to denote the right side of Inequality (4.14). That is, Qlb ≡∑
D∈D d

max
D −

∑
A∈A a

max
A .

We prove the claim by contradiction. Assume that there exists a route σ with initial

load Sσ0 such that the minimum capacity Qσ is less than Qlb. We use SAσ1 to denote the
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load after collecting the donation in Segment i on route σ under the maximum scenario;

therefore max supp(SAσ1 ) is the load upon arrival to Agency i under the maximum scenario.

For Segment 1,

max supp(SAσ1 ) = Sσ0 + dmax
1

For Segment 2, the statement regarding max supp(SAσ2 ) is an inequality because the

allocation at Agency 1 could be less than the maximum allocation:

max supp(SAσ2 ) ≥ Sσ0 + dmax
1 − amax

1 + dmax
2

In general, for Segment i:

max supp(SAσi ) ≥ Sσ0 +
i∑
ι=1

dmax
ι −

i−1∑
ι=1

amax
ι

Let i′ denote the segment in which the final donor is visited. Therefore,
∑i′

ι=1 d
max
ι =∑

D∈D d
max
D . However,

∑i′−1
ι=1 a

max
ι ≤

∑
A∈A a

max
A . Consequently:

i′∑
ι=1

dmax
ι −

i′−1∑
ι=1

amax
ι ≥

∑
D∈D

dmax
D −

∑
A∈A

amax
A

Since Qσ < Qlb, it must be that Pr
{
SAσi′ < Qlb

}
= 1; however, upon calculating

max supp(SAσi′ ) we obtain a contradiction:

max supp(SAσi′ ) ≥ Sσ0 +
i′∑
ι=1

dmax
ι −

i′−1∑
ι=1

amax
ι ≥

∑
D∈D

dmax
D −

∑
A∈A

amax
A = Qlb

�
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Corollary 4.2.4: If at most ρ agencies of the set A may be inserted into an FRP

route of the set of donors D, let Aρ ⊂ A represent the ρ agencies with the highest values

of amax
j . Then,

Q∗ ≥ Qlb(ρ) =
∑
D∈D

dmax
D −

∑
j∈Aρ

amax
j

Proof. The right side of Inequality (4.15) results when Theorem 4.2.3 is applied to

the set of donors D and the set of agencies Aρ. No other ρ-element subset of A could

achieve a lower value for the bound.

�

Theorem 4.3.3: For a given route of donors and agencies, if the ZMIL condition

is satisfied and RAi,i+k =
∑i+k

ι=i a
max
ι for all sets of consecutive agencies, then the node

sequence in the route obtains the minimum vehicle capacity Q∗ possible for that set of

nodes.

Proof. We prove the claim by demonstrating that, under the maximum scenario, the

lower bound on vehicle capacity provided by Theorem 4.2.3 is achieved. Since the MILB

solution is known to be optimal for a given route (Theorem 4.1.4), we use it throughout

the proof. In particular, due to ZMIL and the use of the MILB solution, S0 = 0 and

Ai(s) = min {s, amax
i }.

We first demonstrate that Amax
i = amax

i at every agency. We proceed by induction.

We denote sets of consecutive agencies by Aij ,ij+kj . That is, Ai1,i1+k1 is the first set
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of consecutive agencies to occur in the route, Ai2,i2+k2 is the second set of consecutive

agencies, and so on.

Initial step for the first set of consecutive agencies Ai1,i1+k1: For the first

set of consecutive agencies, since RAi1,i1+k1 =
∑i1+k1

ι=i1
amax
ι , it must be that

∑i1
ι=1 d

max
ι ≥∑i1+k1

ι=i1
amax
ι . Therefore, applying the structure of the MILB solution under the maximum

scenario,
∑i1+k1

ι=i1
Amax
ι = min

{∑i1
ι=1 d

max
ι ,

∑i1+k1
ι=i1

amax
ι

}
=
∑i1+k1

ι=i1
amax
ι , and hence Amax

i =

amax
i ∀ i ∈ {i1, i1 + k1}.

Induction hypothesis for segments prior to ij: As the induction hypothesis, we

assume that Amax
i = amax

i ∀ i < ij.

Proof for the jth set of consecutive agencies Aij ,ij+kj : The condition that

RAij ,ij+kj =
∑ij+kj

ι=ij
amax
ι implies that:

ij∑
ι=1

dmax
ι −

ij−1∑
ι=1

Amax
ι ≥

ij+kj∑
ι=ij

amax
ι

Applying the induction hypothesis, this becomes:

ij∑
ι=1

dmax
ι −

ij−1∑
ι=1

amax
ι ≥

ij+kj∑
ι=ij

amax
ι

Therefore, under the maximum scenario:

ij+kj∑
ι=ij

Amax
ι = min


ij∑
ι=1

dmax
ι −

ij−1∑
ι=1

amax
ι ,

ij+kj∑
ι=ij

amax
ι

 =

ij+kj∑
ι=ij

amax
ι

Therefore, Amax
i = amax

i ∀i ∈ {ij, ij + kj}. By induction, Amax
i = amax

i at every agency.
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Applying Amax
i = amax

i ∀ i to Equation (4.16), the condition RAi,i+k =
∑i+k

ι=i a
max
ι for

all sets of consecutive agencies implies that:

i∑
ι=1

dmax
ι ≥

i−1∑
ι=1

amax
ι ∀ i (A.3a)

n∑
ι=i+1

dmax
ι ≥

n∑
ι=i

amax
ι ∀ i (A.3b)

Inequality (A.3a) implies that, under the maximum scenario, the total donations al-

ready collected exceed the total allocations already made at every point in the route.

Inequality (A.3b) implies that, under the maximum scenario, the total donations yet to

be collected exceeds the total allocations yet to be made at every point in the route. To-

gether, they imply that max supp(SAi ) is monotone nondecreasing throughout the route,

so the optimal capacity is max supp(SAn ). Under the maximum scenario, SAn =
∑n

i=1 d
max
i −∑n

i=1 a
max
i . This is equal to the lower bound on Q∗ established by Theorem 4.2.3.

�

Lemma A.0.1. If b ≤ c, then min{a, b} ≤ min{a, c}.

Proof. Consider the case that a ≤ b. Since b ≤ c, it must be that a ≤ c. Therefore,

min{a, b} = a and min{a, c} = a, so min{a, b} ≤ min{a, c}.

Alternately, consider the case that a > b. Therefore, min{a, b} = b. Since b < a and

b ≤ c, it must be that b ≤ min{a, c}, so min{a, b} ≤ min{a, c}. �
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Theorem 5.3.2: For a one-supersegment route, any solution that minimizes the

initial load S0 is optimal.

Proof. The expected total collection for a one-supersegment route is the sum of the

expected collection at each donor:

C =

|D|∑
i=1

E[Ci] (A.4)

The collection at Donor 1 is determined only by the donation D1, the reserved capacity

q1, and the initial load S0. Upon departure from Donor 1, the load cannot be more than

q1; therefore, the collection cannot exceed q1 − S0:

C1 = min{D1, q1 − S0} (A.5)

Of these, only S0 is a decision variable; Di is a parameter of the instance, and qi is a

function of parameters (see Definition 5.2.1). Therefore, C1 is completely determined by

the initial load S0.

We now consider the collection at Donor 2. In addition to D2, q2, and S0, the collection

at Donor 2 is also determined by the collection at Donor 1, which is itself determined by

D1, q1, and S0:

C2 = min{D2, q2 − C1 − S0} = min{D2, q2 −min{D1, q1 − S0} − S0} (A.6)

Therefore, C2, and indeed all the Ci for i ∈ {1, . . . , |D|}, are completely determined by

S0.
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Let Ci|S0 denote the Ci resulting from initial load S0. Let S′0 denote a particular initial

load value greater than the minimum feasible initial load. By applying induction, we

demonstrate that Ci|S′0 4 Ci|(S′0−1) (that is, that the collection with a lower initial load

stochastically dominates the collection with a higher initial load) for all i ∈ {1, . . . , |D|}.

Initial step for Segment 1:

C1|S′0 = min{D1, q1 − S′0} (A.7a)

C1|(S′0 − 1) = min{D1, q1 − (S′0 − 1)} = min{D1, q1 − S′0 + 1} (A.7b)

Since q1−S′0 < q1−S′0+1, we apply Lemma A.0.1 to conclude that C1|S′0 4 C1|(S′0−1).

As a consequence, we can obtain a similar statement regarding the amount of food in the

vehicle upon arrival to Donor 2 in terms of the initial load:

SD1 |S′0 = S′0 + C1|S′0

= S′0 + min{D1, q1 − S′0}

= min{S′0 +D1, q1}

(A.8a)

SD1 |(S′0 − 1) = S′0 − 1 + C1|(S′0 − 1)

= S′0 − 1 + min{D1, q1 − (S′0 − 1)}

= min{S′0 − 1 +D1, q1}

(A.8b)

Since S′0 + D1 > S′0 − 1 + D1, we apply Lemma A.0.1 to conclude that SD1 |S′0 <

SD1 |(S′0 − 1).

Induction hypothesis: As the induction hypothesis, assume that SDk |S′0 < SDk |(S′0−

1).
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The induction hypothesis implies the stochastic dominance relationship we seek to

demonstrate. We compare the collection at Donor k for initial load values S′0 and (S′0−1):

Ck|S′0 = min{Dk, qk − SDk |S′0} (A.9a)

Ck|(S′0 − 1) = min{Dk, qk − SDk |(S′0 − 1)} (A.9b)

Since qk−SDk |S′0 < qk−SDk |(S′0− 1), we apply Lemma A.0.1 to conclude that Ck|S′0 4

Ck|(S′0 − 1).

Proof for next segment:

We demonstrate that the induction hypothesis holds for the next segment:

SDk+1|S′0 = SDk |S′0 + Ck|S′0

= SDk |S′0 + min{Dk, qk − SDk |S′0}

= min{Dk + SDk |S′0, qk}

(A.10a)

SDk+1|(S′0 − 1) = SDk |(S′0 − 1) + Ck|(S′0 − 1)

= SDk |(S′0 − 1) + min{Dk, qk − SDk |(S′0 − 1)}

= min{Dk + SDk |(S′0 − 1), qk}

(A.10b)

By the induction hypothesis, Dk +SDk |S′0 > Dk +SDk |(S′0−1). We apply Lemma A.0.1

to conclude that SDk+1|S′0 < SDk+1|(S′0 − 1), and hence that Ck+1|S′0 4 Ck+1|(S′0 − 1).

Therefore, by induction, Ci|S′0 4 Ci|(S′0 − 1) for all i ∈ {1, . . . , |D|}.

Therefore,
∑|D|

i=1 E[Ci|S′0] ≤
∑|D|

i=1 E[Ci|(S′0 − 1)] for all S′0 greater than the minimum

feasible initial load.
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Therefore, total collection is maximized if the initial load is at its minimum feasible

value.

�

Theorem 5.3.3: For a one-supersegment route with a single agency, the myopic

allocation policy Am is optimal.

Proof. To prove the claim, we demonstrate that applying the myopic allocation policy

minimizes the initial load. The minimum initial load when the myopic allocation policy

Am is applied to a one-supersegment route with one agency, denoted Sm0 , is:

Sm0 = (max{amin
n −

n∑
i=1

dmin
i , asustn − s1−αn })+ (A.11a)

= max{0, amin
n −

n∑
i=1

dmin
i , asustn − s1−αn } (A.11b)

Assume that the initial load S′0 = Sm0 − z for some z ∈ Z+ is feasible. We consider

three cases, one for each of the terms of Equation (A.11b).

Case Sm0 = 0: : Sm0 = 0 implies that S′0 = −z, violating Constraints (5.1j).
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Case Sm0 = amin
n −

∑n
i=1 d

min
i :: We compute the minimum possible load upon ar-

rival to the agency for initial load S′0:

min supp(SAn ) = min supp

(
S′0 +

n∑
i=1

Di

)

= S′0 +
n∑
i=1

min supp(Di)

= S′0 +
n∑
i=1

dmin
i

= amin
n −

n∑
i=1

dmin
i − z +

n∑
i=1

dmin
i

= amin
n − z

Therefore, the minimum amount of food available upon arrival to the agency is

less than the minimum allocation, violating Constraints (5.1h).

Case Sm0 = asustn − s1−αn :: We compute the probability of the agency receiving at

least its sustaining allocation for initial load S′0:

Pr{SAn ≥ asustn } = Pr

{
S′0 +

n∑
i=1

Di ≥ asustn

}

= Pr

{
asustn − s1−αn − z +

n∑
i=1

Di ≥ asustn

}

= Pr

{
n∑
i=1

Di ≥ s1−αn + z

}

≤ Pr

{
n∑
i=1

Di > s1−αn

}

< αn
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Therefore, the probability of the agency receiving at least its sustaining allocation

is less than αn, violating Constraints (5.1g).

Each case violates a constraint of the 1-PDA-as. Therefore, S′0 is infeasible; Sm0 must

be the minimum feasible initial load. Therefore, by Theorem 5.3.2, applying the myopic

allocation policy yields an optimal solution. �

Corollary 5.3.4: For a one-supersegment route with a single agency, if Pr{SAn ≥

s1−αn } = αn and s1−αn = asustn , then the myopic allocation policy Am is the unique optimal

minimal allocation policy.

Proof. Assume the existence of an optimal non-myopic allocation policy A′ with

associated long-run allocation A′ = A′(SAn ). Since A′ is not myopic, there must be some

s′ ∈ supp(SAn ), s′ ≥ s1−αn , such that Pr{A′(s′) = asustn } < Pr{SAn = s′}.

We compute the probability of the agency receiving the sustaining allocation:

Pr{A′ ≥ asustn } =
∑

s∈supp(SAn )

Pr{A′(s) = asustn }

= 0 +
∑

s∈supp(SAn ):s≥s
1−α
n

Pr{A′(s) = asustn }

≤ Pr{A′(s′) = asustn }+
∑

s∈supp(SAn ):s≥s
1−α
n ,s 6=s′

Pr{SAn = s}

= Pr{A′(s′) = asustn }+ αn − Pr{SAn = s′}

< αn
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By contradiction, such A′ does not exist; therefore, the myopic allocation policy is the

unique optimal minimal allocation policy. �

Theorem 5.3.5: If (asustk −amin
k ) ≥

∑n
i=k+1(a

sust
i −amin

i ) for all k ∈ {|D|, . . . , n}, then

the myopic allocation policy Am is optimal.

Proof. Let A′ denote an optimal solution, which comprises a sequence of allocation

policies A′i with associated supply distributions S′i and long-run allocations A′i:

A′ = A′|D|,A
′
|D|+1, . . . ,A

′
n

Let the myopic solution be denoted Am, which comprises a sequence of allocation policies

Am
i with associated supply distributions Smi and long-run allocations Am

i :

Am = Am
|D|,A

m
|D|+1, . . . ,A

m
n

We assume that the optimal solution is not myopic; that is, that A′ 6= Am. Therefore,

there must exist some k ∈ {|D|, |D|+ 1, . . . , n} such that:

• ∀i < k, A′i = Am
i , and

• A′k 6= Am
k .

Without loss of generality, we assume that:

• Agency k is the first agency in the supersegment; that is, k = |D|.

• A′ is a minimal allocation policy; that is, ∀i ∈ {|D|, . . . , n}, Pr{A′i = asusti } = α

and Pr{A′i = amin
i } = 1− α.
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The first assumption is permissible because, for all agencies prior to Agency k, A′i =

Am
i ; therefore, S′k = Smk .

The second assumption is permissible because allocating more than the minimum

required cannot improve the objective in a one-supersegment problem.

Within the context of this proof, we introduce a special way to describe minimal

allocation policies: The Boolean allocation policy Âi : [0, 1]→ {0, 1} maps the cumulative

probability t to 1 if the sustaining allocation is provided for the associated quantile sti ∈

supp(SAi ), 0 otherwise. That is,

Âi(t) =


0 if Ai(s

t
i) = amin

i

1 if Ai(s
t
i) = asusti

(A.15)

The joint Boolean allocation policy Â : [0, 1] → {0, 1} × {0, 1} × · · · × {0, 1} is the

composition of the Âi. A joint Boolean allocation policy meets the requirements for

providing the sustaining allocation at each agency; that is, ∀i ∈ {|D|, . . . , n}:

∫ 1

0

Âi(t)dt = αi (A.16)

We denote the joint Boolean allocation policy for the optimal allocation policy by

Â′, the composition of the Â′i. By the second assumption above, it must be that, ∀i ∈

{|D|, . . . , n}: ∫ 1

0

Â′i(t)dt = αi (A.17)
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We denote the joint Boolean allocation policy for the myopic allocation policy by Âm,

the composition of the Âm
i , which are given by:

Âi(t) =


0 if t ≥ 1− αi

1 if t < 1− αi
(A.18)

Therefore, ∀i ∈ {|D|, . . . , n}: ∫ 1

0

Âm
i (t)dt = αi (A.19)

We define the function S to compute the initial load required for the joint Boolean

allocation policy Â given t ∈ [0, 1]:

S(Â(t)) =

 n∑
i=|D|

amin
i + Âi(t) · (asusti − amin

i )− st|D|

+

(A.20)

in which st|D| is the t quantile of SA|D|.

For later steps of this proof, it is convenient to decompose one term of Equation (A.20)

to obtain:

S(Â(t)) =

 n∑
i=|D|

amin
i + Â|D|(t) · (asust|D| − amin

|D| ) +
n∑

i=|D|+1

Âi(t) · (asusti − amin
i )− st|D|

+

(A.21)

Therefore, given a joint Boolean allocation policy, the required initial load is the

maximum initial load over all t ∈ [0, 1]:

S0(Â) = max
t∈[0,1]

S(Â(t)) (A.22)
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We now consider the values t ∈ [0, 1] for which Â′|D| and Âm
|D| differ. Let T0, T1 ⊂ [0, 1]

such that, ∀t0 ∈ T0 and t1 ∈ T1:

Âm
|D|(t0) = 0 (A.23a)

Â′|D|(t0) = 1 (A.23b)

Âm
|D|(t1) = 1 (A.23c)

Â′|D|(t1) = 0 (A.23d)

Since Âm
|D|(t0) = 0, it must be that t0 < 1− α|D| ∀t0 ∈ T0. Since Âm

|D|(t1) = 1, it must

be that t1 ≥ 1− α|D| ∀t1 ∈ T1. Therefore, t0 < t1, ∀t0 ∈ T0, t1 ∈ T1.

Let T ⊂ T0 × T1 be a one-to-one mapping from T0 onto T1 (and hence from T1 onto

T0). (Such a mapping must exist because, since both Â′ and Âm are minimal allocation

policies, T0 and T1 have the same measure.)

Having described the differences between Â′ and Âm at Agency |D|, let us define

another joint Boolean allocation policy Âm′. In essence, Âm′ is Â′, but with the element

pairs in T exchanged so that the allocation policy is myopic at Agency |D|. As the central

argument of this proof, we demonstrate that applying Âm′ can only improve the objective

with respect to applying Â′. A rigorous definition of Âm′ is:

Âm′(t) =



Â′(t) = Âm(t) if t 6∈ T0 ∪ T1

Â′(t1), where (t0, t1) ∈ T t ∈ T0

Â′(t0), where (t0, t1) ∈ T t ∈ T1

(A.24)
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We compare Â′ and Âm′ by computing S(Â′) and S(Âm′) for any (t0, t1) ∈ T . Ap-

plying Equation (A.21), we compute:

S(Â′(t0)) =

 n∑
i=|D|

amin
i + (asust|D| − amin

|D| ) +
n∑

i=|D|+1

Â′i(t0) · (asusti − amin
i )− st0|D|

+

(A.25a)

S(Â′(t1)) =

 n∑
i=|D|

amin
i +

n∑
i=|D|+1

Â′i(t1) · (asusti − amin
i )− st1|D|

+

(A.25b)

S(Âm′(t0)) =

 n∑
i=|D|

amin
i +

n∑
i=|D|+1

Â′i(t1) · (asusti − amin
i )− st0|D|

+

(A.25c)

S(Âm′(t1)) =

 n∑
i=|D|

amin
i + (asust|D| − amin

|D| ) +
n∑

i=|D|+1

Â′i(t0) · (asusti − amin
i )− st1|D|

+

(A.25d)

By Equation (A.22), S0(Â) is determined by the maximum value of S(Â(t)); therefore,

it suffices to compare S(Â′(t0)) with S(Âm′(t0)) and S(Âm′(t1)).

(That is: If S(Â′(t1)) < S(Â′(t0)), then S0(Â
′) is at least S(Â′(t0)), so the value of

S(Â′(t1)) is irrelevant. If S(Â′(t1)) > S(Â′(t0)), then demonstrating that S(Âm′(t0)) and

S(Âm′(t1)) are less than S(Â′(t0)) implies that they are also less than S(Â′(t1)).)

Equations (A.25d) and (A.25a) differ only in the final term. Since t0 < t1, it must be

that st0|D| ≤ st1|D|. Therefore, S(Âm′(t0)) ≤ S(Â′(t0)).

By assumption, (asust|D| − amin
|D| ) ≥

∑n
i=|D|+1(a

sust
i − amin

i ). Therefore, (asust|D| − amin
|D| ) +∑n

i=|D|+1 Â′i(t0)(a
sust
i − amin

i ) ≥
∑n

i=|D|+1 Â′i(t1)(a
sust
i − amin

i ). Therefore, S(Âm′(t1)) ≤

S(Â′(t1)).
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The relationship demonstrated among S(Â′(t0)), S(Âm′(t0)), and S(Âm′(t1)) holds for

any (t0, t1) ∈ T . For all t 6∈ T0 ∪ T1, Â′(t) = Âm(t). Therefore, S0(Â
′) ≥ S0(Â

m′). Since

Â′ is an optimal solution, by Theorem 5.3.2, Âm′ must be an optimal solution.

In general, any optimal solution that is myopic prior to Agency k and is not myopic

at Agency k can be used to obtain an optimal solution that is myopic at Agency k. The

procedure can be applied repeatedly at all agencies for which the solution is not myopic,

always obtaining another optimal solution. The final result of this process is a solution

that is myopic at all agencies; therefore, the myopic solution is an optimal solution.

�
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APPENDIX B

Dynamic programming formulation of the 1-PDA

The state space of the dynamic program (DP) in Segment i is the load upon arrival to

Agency i. In terms of the stochastic program, Si = supp(SAi ). However, we do not know

the support of the SAi a priori, so we must determine minimum and maximum values for

the Si.

The minimum value of Si is determined by the necessity to provide the minimum

allocation to Agency i and to all agencies later in the route. At Segment n, only the

final agency must be considered; therefore, min(Sn) = amin
n . At every other segment, the

minimum value of Si can be calculated recursively:

min(Si) = amin
i +

(
min(Si+1)− dmin

i+1

)+ ∀i ∈ {0, . . . , n− 1} (B.1)

Segment 0 represents the depot, so min(S0) is the minimum feasible initial load.

For each segment, the amount by which the load increases cannot exceed the maximum

donation of that segment. Therefore, we obtain a simple upper bound on the maximum

value for Si by summing the initial load and the maximum donations:

max(Si) = min(S0) +
i∑

i′=1

dmin
i′ ∀i ∈ {1, . . . , n} (B.2)
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The action set Ai(si) from state si in Segment i contains the possible allocations at

Agency i:

Ai(si) = {amin
i , ...,min{si, amax

i }} (B.3)

The set of available actions from a state si is also limited by the state space of the

next segment, since min(Si+1) may be greater than 0. Therefore, it must be that:

si − ai + dmin
i+1 ∈ Si+1 (B.4)

The transition probabilities from a state si to a state si+1 under action (allocation) a

are denoted pi(si+1|si, a). That is, pi(si+1|si, a) = Pr{Si+1 = si+1|Si = si, Ai = a}. They

are given by:

pi(si+1|si, a) = Pr{Di+1 = si+1 − si + a} (B.5)

The contribution function of the DP is qi, the maximum capacity required to complete

the route from the current state. For the final segment of the route, qn is simply the load;

that is, qn(sn) = sn. For prior segments, qi is the maximum possible load in the current

segment or over the course of the rest of the route. This relationship is expressed through

the optimality equation for the DP:

qi(si) = min
amin
i ≤ai≤min{si,amax

i };si−ai+dmin
i+1∈Si+1

max
{
si, qi+1

(
si − ai + dmax

i+1

)}
(B.6)

The solution to the 1-PDA consists of the initial load S0, the capacity Q, and the

allocation policy Ai(·) ∀i ∈ {1, . . . , n}. In terms of our DP formulation, S0 = min(S0),

Q = q0(S0), and the allocation policy is determined by the optimality equation at each

state.
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Although it is possible to solve the 1-PDA through dynamic programming, the MILB

algorithm is simpler and more efficient. Merely defining the minima of the state space of

the DP would require the same effort as the first step of the MILB method. Obtaining

the allocation policy from the DP would then require solving the optimality equation at

every state, in stark contrast to the few simple calculations required to obtain the MILB

allocation policy (Equation (4.4)).
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APPENDIX C

Maps of NIFB regions

Figure C.1 North Suburban
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Figure C.2 South Suburban

Figure C.3 West Suburban
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Figure C.4 Northwest
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APPENDIX D

Alternate insertion algorithms

In this appendix, we describe the performance of several myopic agency insertion

algorithms considered in addition to CRIH: nearest insertion (NI), insertion of the feasible

agency with largest value of amax (MaxI), and insertion of the feasible agency with the

smallest value of amin (MinI). In §D.1, we formally define the alternate agency insertion

algorithms. In §D.2, we present summary statistics for the algorithms.

D.1. Description of algorithms

All of the alternate insertion algorithms restrict insertion to edges not adjacent to the

depot, due to Theorem 4.2.2. We denote the tail and head of edge e, respectively, u(e)

and v(e).

Nearest Insertion (NI). The nearest insertion algorithm chooses the agency nearest

to the current route. As such, NI seeks to insert as many agencies as possible, without

regard for the parameter values of those agencies.
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Step 1: Update: Calculate C, the total travel time of the current route.

Step 2: Calculate cost of nearest insertion for each agency: For every agency

k not on the current route, find an edge ek not adjacent to the depot that

minimizes the insertion cost cke = t((u(e),k)+t(k,v(e))−te, such that cke ≤ T−C.

If there are multiple such edges, choose one at random. If there are no such

edges for any agency, return the current route as the NI solution; otherwise,

go to Step 3.

Step 3: Insert agency: Let k∗ = argminkck,ek . Insert agency k∗ on edge ek∗ . If

there are multiple such agencies, insert one chosen among them at random.

Go to Step 1.

Largest amax Insertion (MaxI)

The largest amax insertion algorithm chooses the agency with the largest maximum allo-

cation that can be feasibly inserted into the current route. Like CRIH, MaxI attempts

to place agencies with large maximum allocation values in the route in order to reuse as

much capacity as possible; unlike CRIH, MaxI does not ensure that donations received

before and after the insertion point are sufficient to allow capacity reuse to occur.
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Step 1: Update: Calculate C, the total travel time of the current route.

Step 2: Calculate cost of nearest insertion for each agency: For every agency

k not on the current route, find an edge ek not adjacent to the depot that

minimizes the insertion cost cke = t((u(e),k)+t(k,v(e))−te, such that cke ≤ T−C.

If there are multiple such edges, choose one at random. If there are no

such edges for any agency, return the current route as the MaxI solution;

otherwise, go to Step 3.

Step 3: Insert agency: Let k∗ = argmaxk{amax
k }. Insert agency k∗ on edge

ek∗ . If there are multiple such agencies, insert one with minimum insertion

cost. Go to Step 1.

Smallest amin Insertion (MinI)

The smallest amin insertion algorithm chooses the agency with the smallest minimum

allocation that can be feasibly inserted into the current route. As such, MinI attempts

to make the initial load and intermediate loads as small as possible.
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Step 1: Update: Calculate C, the total travel time of the current route.

Step 2: Calculate cost of nearest insertion for each agency: For every agency

k not on the current route, find an edge ek not adjacent to the depot that

minimizes the insertion cost cke = t((u(e),k)+t(k,v(e))−te, such that cke ≤ T−C.

If there are multiple such edges, choose one at random. If there are no

such edges for any agency, return the current route as the MinI solution;

otherwise, go to Step 3.

Step 3: Insert agency: Let k∗ = argmink{amin
k }. Insert agency k∗ on edge ek∗ .

If there are multiple such agencies, insert one with minimum insertion cost.

Go to Step 1.

D.2. Performance of algorithms

As demonstrated in Tables D.1, D.2, and D.3, the optimality gaps for CRIH (see Table

4.11) are substantially smaller than those of all the other algorithms for every combination

of maximum total travel time T and number of available agencies |A|.

Table D.1. Average optimality gap of NI applied to
heuristically-generated donor routes for varying maximum total travel

time T and number of available agencies |A|

|A|
T 1 2 3 4 5 6 7

TD + 30 6.0% 8.4% 9.4% 9.3% 9.5% 8.2% 7.5%
TD + 60 1.2% 5.7% 10.7% 10.9% 15.3% 12.4% 15.8%
TD + 90 0.4% 3.1% 9.0% 9.6% 18.8% 23.7% 28.9%
TD + 120 0.4% 2.6% 6.5% 7.1% 22.7% 21.1% 36.0%
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Table D.2. Average optimality gap of MaxI applied to
heuristically-generated donor routes for varying maximum total travel

time T and number of available agencies |A|

|A|
T 1 2 3 4 5 6 7

TD + 30 6.0% 6.5% 6.8% 4.7% 5.7% 3.2% 10.2%
TD + 60 1.2% 4.2% 5.3% 4.4% 8.4% 2.7% 8.8%
TD + 90 0.4% 1.9% 5.8% 4.9% 13.7% 9.0% 12.4%
TD + 120 0.4% 1.9% 4.6% 4.4% 15.5% 10.4% 18.8%

Table D.3. Average optimality gap of MinI applied to
heuristically-generated donor routes for varying maximum total travel

time T and number of available agencies |A|

|A|
T 1 2 3 4 5 6 7

TD + 30 6.0% 8.6% 8.4% 7.4% 10.2% 6.6% 19.1%
TD + 60 1.2% 6.8% 10.7% 11.6% 16.8% 12.9% 39.6%
TD + 90 0.4% 2.3% 10.0% 12.9% 21.9% 22.1% 57.8%
TD + 120 0.4% 1.9% 5.3% 7.2% 20.9% 22.4% 42.7%
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